Materials Science Stories

The research field of Materials Science as a source for scientific stories. Scientists within the network of 4TU.HTM are welcome to tell their stories here.
4TU Delft
4TU Eindhoven
4TU Twente
4TU Wageningen

Pingpongballen als wetenschappelijk instrument

Jilt Sietsma

Inleiding
Bij het begrip pingpongballen denken we niet direct aan wetenschap. Toch wist prof. Willie Burgers (hoogleraar Fysische Scheikunde aan de TU Delft tussen 1940 en 1967, één van de founding fathers van de afdeling Materiaalkunde) sets pingpongballen te gebruiken als wetenschappelijke instrumenten om atomaire structuren te onderzoeken en beschrijven. De pingpongballenmodellen werden gebruikt om aankomende ingenieurs basisbegrippen van structuren in materialen bij te brengen en om wetenschappelijke inzichten daarin te ontwikkelen. Het mooie is dat deze modellen, bestaand uit aan elkaar gelijmde pingpongballen of met veertjes verbonden houten bolletjes, nog steeds gebruikt worden. Met name in het onderwijs werkt het toch veel beter om 3D-structuren in je hand te houden en van alle kanten te kunnen bekijken dan ze op een beeldscherm te zien draaien.

Pingpongballen en atomen
De pingpongballen staan voor atomen. Atomen vormen de kern van alle materialen en zijn daarom van groot belang voor alle technologische ontwikkelingen. De ordening van atomen in een materiaal (de “structuur”) bepaalt de eigenschappen van dat materiaal. Een mooi voorbeeld is het element koolstof. Als de koolstofatomen in een gelaagde structuur van zeshoeken geordend zijn noemen we het materiaal grafiet en kunnen we er potloden van maken. We gebruiken het ook als smeermiddel. Als de koolstofatomen in een driedimensionale kubische kristalstructuur gerangschikt zijn, noemen we het materiaal diamant en dat is het hardste materiaal dat ons bekend is. We gebruiken de koolstofatomen dan als schuurmiddel. Beide materialen komen in de natuur voor, maar in de afgelopen decennia zijn ook kunstmatige varianten van koolstof ontwikkeld, zoals fullereen (“bucky balls”), nanotubes en grafeen. En dat allemaal op basis van alleen koolstofatomen. Ook voor metalen geldt dat de structuur bepalend is voor de eigenschappen en daarmee voor de toepasbaarheid. Prof. Burgers begreep in de vijftiger jaren heel goed dat wetenschappelijk onderzoek en onderwijs nodig was op het gebied van de metaalkunde om de relaties tussen vormingsprocessen, structuur en eigenschappen van metalen beter te begrijpen, met als doel om metalen met nieuwe en verbeterde eigenschappen te kunnen ontwikkelen. Zijn gelijk werd in die jaren bevestigd door het oprichten van het grootste pingpongballenmodel ter wereld, het Atomium in Brussel.

Lees verder (over dislocaties en fasetransformaties):
Pingpongballen als wetenschappelijk instrument (Pdf file) 

Uit: 175 jaar TU Delft. Erfgoed in 33 verhalen. P.TH.L.M. van Woerkom (red.), uitgave Histechnica, 2017.

Fig.: Een pingpongballenmodel met een dislocatie, een Burgerscircuit (blauw) en de Burgersvector (rood).

Prof.dr.ir. J. Sietsma is metaalkundige (TU Delft: ir. 1981, dr. 1987), sinds 2009 hoogleraar aan de TU Delft, met leeropdracht Microstructure Control in Metals. Zijn voornaamste expertise ligt in de fysische en thermodynamische processen bij de vorming en het gedrag van microstructuren in metallische legeringen. Hij werkt aan de fundamentele aspecten van de productie van metalen en het gedrag van materialen in een wijd scala van toepassingen.

Also look at this video in which prof. Bragg discusses crystal defects: Experiments w/ the Bubble Model of a Metal Structure (1954)

Pingpongballen als wetenschappelijk instrument

Jilt Sietsma

Inleiding
Bij het begrip pingpongballen denken we niet direct aan wetenschap. Toch wist prof. Willie Burgers (hoogleraar Fysische Scheikunde aan de TU Delft tussen 1940 en 1967, één van de founding fathers van de afdeling Materiaalkunde) sets pingpongballen te gebruiken als wetenschappelijke instrumenten om atomaire structuren te onderzoeken en beschrijven. De pingpongballenmodellen werden gebruikt om aankomende ingenieurs basisbegrippen van structuren in materialen bij te brengen en om wetenschappelijke inzichten daarin te ontwikkelen. Het mooie is dat deze modellen, bestaand uit aan elkaar gelijmde pingpongballen of met veertjes verbonden houten bolletjes, nog steeds gebruikt worden. Met name in het onderwijs werkt het toch veel beter om 3D-structuren in je hand te houden en van alle kanten te kunnen bekijken dan ze op een beeldscherm te zien draaien.

Pingpongballen en atomen
De pingpongballen staan voor atomen. Atomen vormen de kern van alle materialen en zijn daarom van groot belang voor alle technologische ontwikkelingen. De ordening van atomen in een materiaal (de “structuur”) bepaalt de eigenschappen van dat materiaal. Een mooi voorbeeld is het element koolstof. Als de koolstofatomen in een gelaagde structuur van zeshoeken geordend zijn noemen we het materiaal grafiet en kunnen we er potloden van maken. We gebruiken het ook als smeermiddel. Als de koolstofatomen in een driedimensionale kubische kristalstructuur gerangschikt zijn, noemen we het materiaal diamant en dat is het hardste materiaal dat ons bekend is. We gebruiken de koolstofatomen dan als schuurmiddel. Beide materialen komen in de natuur voor, maar in de afgelopen decennia zijn ook kunstmatige varianten van koolstof ontwikkeld, zoals fullereen (“bucky balls”), nanotubes en grafeen. En dat allemaal op basis van alleen koolstofatomen. Ook voor metalen geldt dat de structuur bepalend is voor de eigenschappen en daarmee voor de toepasbaarheid. Prof. Burgers begreep in de vijftiger jaren heel goed dat wetenschappelijk onderzoek en onderwijs nodig was op het gebied van de metaalkunde om de relaties tussen vormingsprocessen, structuur en eigenschappen van metalen beter te begrijpen, met als doel om metalen met nieuwe en verbeterde eigenschappen te kunnen ontwikkelen. Zijn gelijk werd in die jaren bevestigd door het oprichten van het grootste pingpongballenmodel ter wereld, het Atomium in Brussel.

Lees verder (over dislocaties en fasetransformaties):
Pingpongballen als wetenschappelijk instrument (Pdf file) 

Uit: 175 jaar TU Delft. Erfgoed in 33 verhalen. P.TH.L.M. van Woerkom (red.), uitgave Histechnica, 2017.

Fig.: Een pingpongballenmodel met een dislocatie, een Burgerscircuit (blauw) en de Burgersvector (rood).

Prof.dr.ir. J. Sietsma is metaalkundige (TU Delft: ir. 1981, dr. 1987), sinds 2009 hoogleraar aan de TU Delft, met leeropdracht Microstructure Control in Metals. Zijn voornaamste expertise ligt in de fysische en thermodynamische processen bij de vorming en het gedrag van microstructuren in metallische legeringen. Hij werkt aan de fundamentele aspecten van de productie van metalen en het gedrag van materialen in een wijd scala van toepassingen.

Also look at this video in which prof. Bragg discusses crystal defects: Experiments w/ the Bubble Model of a Metal Structure (1954)

Materials Science Stories

Pingpongballen als wetenschappelijk instrument

Jilt Sietsma

Inleiding
Bij het begrip pingpongballen denken we niet direct aan wetenschap. Toch wist prof. Willie Burgers (hoogleraar Fysische Scheikunde aan de TU Delft tussen 1940 en 1967, één van de founding fathers van de afdeling Materiaalkunde) sets pingpongballen te gebruiken als wetenschappelijke instrumenten om atomaire structuren te onderzoeken en beschrijven. De pingpongballenmodellen werden gebruikt om aankomende ingenieurs basisbegrippen van structuren in materialen bij te brengen en om wetenschappelijke inzichten daarin te ontwikkelen. Het mooie is dat deze modellen, bestaand uit aan elkaar gelijmde pingpongballen of met veertjes verbonden houten bolletjes, nog steeds gebruikt worden. Met name in het onderwijs werkt het toch veel beter om 3D-structuren in je hand te houden en van alle kanten te kunnen bekijken dan ze op een beeldscherm te zien draaien.

Pingpongballen en atomen
De pingpongballen staan voor atomen. Atomen vormen de kern van alle materialen en zijn daarom van groot belang voor alle technologische ontwikkelingen. De ordening van atomen in een materiaal (de “structuur”) bepaalt de eigenschappen van dat materiaal. Een mooi voorbeeld is het element koolstof. Als de koolstofatomen in een gelaagde structuur van zeshoeken geordend zijn noemen we het materiaal grafiet en kunnen we er potloden van maken. We gebruiken het ook als smeermiddel. Als de koolstofatomen in een driedimensionale kubische kristalstructuur gerangschikt zijn, noemen we het materiaal diamant en dat is het hardste materiaal dat ons bekend is. We gebruiken de koolstofatomen dan als schuurmiddel. Beide materialen komen in de natuur voor, maar in de afgelopen decennia zijn ook kunstmatige varianten van koolstof ontwikkeld, zoals fullereen (“bucky balls”), nanotubes en grafeen. En dat allemaal op basis van alleen koolstofatomen. Ook voor metalen geldt dat de structuur bepalend is voor de eigenschappen en daarmee voor de toepasbaarheid. Prof. Burgers begreep in de vijftiger jaren heel goed dat wetenschappelijk onderzoek en onderwijs nodig was op het gebied van de metaalkunde om de relaties tussen vormingsprocessen, structuur en eigenschappen van metalen beter te begrijpen, met als doel om metalen met nieuwe en verbeterde eigenschappen te kunnen ontwikkelen. Zijn gelijk werd in die jaren bevestigd door het oprichten van het grootste pingpongballenmodel ter wereld, het Atomium in Brussel.

Lees verder (over dislocaties en fasetransformaties):
Pingpongballen als wetenschappelijk instrument (Pdf file) 

Uit: 175 jaar TU Delft. Erfgoed in 33 verhalen. P.TH.L.M. van Woerkom (red.), uitgave Histechnica, 2017.

Fig.: Een pingpongballenmodel met een dislocatie, een Burgerscircuit (blauw) en de Burgersvector (rood).

Prof.dr.ir. J. Sietsma is metaalkundige (TU Delft: ir. 1981, dr. 1987), sinds 2009 hoogleraar aan de TU Delft, met leeropdracht Microstructure Control in Metals. Zijn voornaamste expertise ligt in de fysische en thermodynamische processen bij de vorming en het gedrag van microstructuren in metallische legeringen. Hij werkt aan de fundamentele aspecten van de productie van metalen en het gedrag van materialen in een wijd scala van toepassingen.

Also look at this video in which prof. Bragg discusses crystal defects: Experiments w/ the Bubble Model of a Metal Structure (1954)

Pingpongballen als wetenschappelijk instrument

Jilt Sietsma

Inleiding
Bij het begrip pingpongballen denken we niet direct aan wetenschap. Toch wist prof. Willie Burgers (hoogleraar Fysische Scheikunde aan de TU Delft tussen 1940 en 1967, één van de founding fathers van de afdeling Materiaalkunde) sets pingpongballen te gebruiken als wetenschappelijke instrumenten om atomaire structuren te onderzoeken en beschrijven. De pingpongballenmodellen werden gebruikt om aankomende ingenieurs basisbegrippen van structuren in materialen bij te brengen en om wetenschappelijke inzichten daarin te ontwikkelen. Het mooie is dat deze modellen, bestaand uit aan elkaar gelijmde pingpongballen of met veertjes verbonden houten bolletjes, nog steeds gebruikt worden. Met name in het onderwijs werkt het toch veel beter om 3D-structuren in je hand te houden en van alle kanten te kunnen bekijken dan ze op een beeldscherm te zien draaien.

Pingpongballen en atomen
De pingpongballen staan voor atomen. Atomen vormen de kern van alle materialen en zijn daarom van groot belang voor alle technologische ontwikkelingen. De ordening van atomen in een materiaal (de “structuur”) bepaalt de eigenschappen van dat materiaal. Een mooi voorbeeld is het element koolstof. Als de koolstofatomen in een gelaagde structuur van zeshoeken geordend zijn noemen we het materiaal grafiet en kunnen we er potloden van maken. We gebruiken het ook als smeermiddel. Als de koolstofatomen in een driedimensionale kubische kristalstructuur gerangschikt zijn, noemen we het materiaal diamant en dat is het hardste materiaal dat ons bekend is. We gebruiken de koolstofatomen dan als schuurmiddel. Beide materialen komen in de natuur voor, maar in de afgelopen decennia zijn ook kunstmatige varianten van koolstof ontwikkeld, zoals fullereen (“bucky balls”), nanotubes en grafeen. En dat allemaal op basis van alleen koolstofatomen. Ook voor metalen geldt dat de structuur bepalend is voor de eigenschappen en daarmee voor de toepasbaarheid. Prof. Burgers begreep in de vijftiger jaren heel goed dat wetenschappelijk onderzoek en onderwijs nodig was op het gebied van de metaalkunde om de relaties tussen vormingsprocessen, structuur en eigenschappen van metalen beter te begrijpen, met als doel om metalen met nieuwe en verbeterde eigenschappen te kunnen ontwikkelen. Zijn gelijk werd in die jaren bevestigd door het oprichten van het grootste pingpongballenmodel ter wereld, het Atomium in Brussel.

Lees verder (over dislocaties en fasetransformaties):
Pingpongballen als wetenschappelijk instrument (Pdf file) 

Uit: 175 jaar TU Delft. Erfgoed in 33 verhalen. P.TH.L.M. van Woerkom (red.), uitgave Histechnica, 2017.

Fig.: Een pingpongballenmodel met een dislocatie, een Burgerscircuit (blauw) en de Burgersvector (rood).

Prof.dr.ir. J. Sietsma is metaalkundige (TU Delft: ir. 1981, dr. 1987), sinds 2009 hoogleraar aan de TU Delft, met leeropdracht Microstructure Control in Metals. Zijn voornaamste expertise ligt in de fysische en thermodynamische processen bij de vorming en het gedrag van microstructuren in metallische legeringen. Hij werkt aan de fundamentele aspecten van de productie van metalen en het gedrag van materialen in een wijd scala van toepassingen.

Also look at this video in which prof. Bragg discusses crystal defects: Experiments w/ the Bubble Model of a Metal Structure (1954)