Part of the
4TU.
Health
TU DelftTU EindhovenUniversity of TwenteWageningen University
4TU.
Health
Close

4TU.Federation

+31(0)6 48 27 55 61

secretaris@4tu.nl

Website: 4TU.nl

Synthetic cells communicate with organic cells

Tuesday, 11 October 2022
Marleen van Stevendaal has researched how communication between synthetic cells and living tissue can be controlled using chemokines.

Many things are already possible when it comes to mimicking organic cells. For example, Jan van Hest’s group has developed a synthetic cell platform in which all kinds of cell aspects can be mimicked in order to better understand them. With her background in cell biology and biochemistry, Marleen van Stevendaal wanted to investigate whether it was possible for these synthetic cells to communicate with organic cells. In her thesis, she describes how she succeeded in this.

For decades, researchers have been fascinated by the question of what constitutes life. As a result, the definitions of living tissue and organisms are constantly improving. For instance, the smallest forms of life are cells, which are made up of different compartments. In addition, these are able to produce energy, multiply and communicate with the environment. To better understand these phenomena, researchers are trying to create living cells from the very smallest building blocks. This means putting individual building blocks together like Lego to mimic cellular characteristics.

In her PhD research in the Bio-Organic Chemistry group, Marleen van Stevendaal focused on developing synthetic cells that can cooperate well with living tissue. This cooperation could make it possible to eventually apply synthetic cells to the targeted delivery of signaling molecules, for example. In addition, this research enhances our understanding of how organic tissue communicates at a fundamental level.

First and foremost, good communication requires that the synthetic cells not be harmful to living cells. Furthermore, they must have a communication system through which living cells can respond and modify their behavior. Finally, it must be possible to incorporate the synthetic cells into the complex environment of living cells and tissues.