Resilient transportation 4TU DeSIRE Conference on Resilience Engineering

Maaike Snelder, Eric van Berkum

Presentations

- 13:30-13:55h Resilience of Road transport networks Maaike Snelder (TU Delft)
- 13:55-14:20h Resilience of of traffic and logistics Oskar eikenbroek (University of Twente)
- 14:20-14:45h Resilience of the World Airline Network by Trivik Verma (TU Delft)
- 14:45-15:00h Plenary discussion

Resilient Road Transport 4TU DeSIRE Conference on Resilience Engineering

Maaike Snelder

Introduction

Overview analyses and interventions

- Data analyses
- Model analyses
- Interventions

Daily congestion morning peak

ŤUDelft

Resilience triangle

Source: Prof Michael A P Taylor University of South Australia

Heavy rain and thunder

Fatal accident

Snow

- 1. Incidents
- 2. Weather

ŤUDelft

- 3. Work zones
- 4. Fluctuation in demand

- 5. Special events
- 6. Traffic control devices
- 7. Inadequate base capacity
- 8. Disasters e.g. tsunami, earthquake, flood

Possible effects of an incident

Focus on 1, 2 and 5

Detection queues (rule based)

Time

- Indication start time, location, duration
- Spill back speed
- Stop speed > 70 km/h

Spillback effects

Rubbernecking effects

A1L, Sat 25 Apr 2009

Reference choice - example

	Weight		VLH _
13-jan-09	-	1	1200
20-jan-09		2	600
27-jan-09		3	430
3-feb-09		4	500
10-feb-09	day incident		800
17-feb-09		4	550
24-feb-09		3	800
3-mrt-09		2	480
10-mrt-09		1	580

	VLH _
27-jan-09	430
27-jan-09	430
27-jan-09	430
3-mrt-09	480
3-mrt-09	480
3-feb-09	500
17-feb-09	550
10-mrt-09	580
20-jan-09	600
20-jan-09	600
24-feb-09	800
24-feb-09	800
24-feb-09	800
13-jan-09	1200

februari 2009 januari 2009 maart 2009 dwdvzz d w d v z z dwdvzz m m m 29 2 3 30 2 3 8 9 10 11 5 6 78 10 5 6 2 3 4 5 -6 8 -6 7 4 3 12 13 14 15 16 17 18 9 10 11 12 13 14 15 11 9 10 11 12 13 14 15 a 16 17 18 19 20 21 22 4 19 20 21 22 23 24 25 12 16 17 18 19 20 21 22 5 26 27 28 29 30 31 9 23 24 25 26 27 28 13 23 24 25 26 27 28 29 14 30 31

Vulnerable road sections 2007-2009

Input incident types

												Weaving	section wi	thou hard
		w	th hard sho	ulder	wit	hout ha	rd sho	ulder	w	eaving sec	tion		should er	
				capacity				ca pa city			capacity			capacity
	ID Incident type	risk	duration	reduction	risk	durat	tion	reduction	risk	duration	reduction	risk	duration	reduction
				factor			1	factor			factor			factor
7	1 car break down on the road	0.1	8 0.28	3 0.75	0.	31	0.33	0.75	0.18	3 0.28	0.75	0.31	0.33	0.75
ŧe	2 truck break down	0.5	3 0.53	3 0.80	0.	70	0.58	0.80	0.53	8 0.53	0.80	0.70	0.58	0.80
출토	3 truck accident	0.1	8 1.80) 0.80	0.	23	1.84	0.80	0.21	1.80	0.80	0.26	1.84	0.80
- o	4 car accident with one lane closed	0.1	3 0.44	0.60	0.	19	0.49	0.60	0.14	0.44	0.60	0.21	0.49	0.60
~	5 road closure	0.0	3 0.89	0.90	0.	05	0.93	0.90	0.04	0.89	0.90	0.06	0.93	0.90
2	6 car break down on the road	0.1	8 0.28	3 0.53	0.	31	0.33	0.53	0.18	3 0.28	0.53	0.31	0.33	0.53
ŧs	7 truck break down	0.5	3 0.53	3 0.53	0.	70	0.58	0.53	0.53	3 0.53	0.53	0.70	0.58	0.53
÷ č	8 truck accident	0.1	8 1.80) 0.76	0.	23	1.84	0.76	0.21	1.80	0.76	0.26	1.84	0.76
8 -	9 car accident with one lane closed	0.1	3 0.44	0.60	0.	19	0.49	0.60	0.14	0.44	0.60	0.21	0.49	0.60
~	10 car accident with two lanes closed	0.0	3 0.89	0.90	0.	05	0.93	0.90	0.04	0.89	0.90	0.06	0.93	0.90
m	11 car break down on the road	0.2	4 0.28	3 0.36	0.	37	0.33	0.36	0.24	0.28	0.36	0.37	0.33	0.36
÷	12 truck break down	0.7	0 0.53	3 0.38	0.	87	0.58	0.38	0.70	0.53	0.38	0.87	0.58	0.38
ja š	13 truck accident	0.2	4 1.80) 0.59	0.	29	1.84	0.59	0.27	/ 1.80	0.59	0.33	1.84	0.59
칠	14 car accident with one lane closed	0.1	0 0.41	0.40	0.	16	0.46	0.40	0.11	0.41	0.40	0.17	0.46	0.40
8	15 car accident with two lanes closed	0.0	3 0.65	5 0.70	0.	05	0.69	0.70	0.04	0.65	0.70	0.06	0.69	0.70
	16 car accident with three or more lanes closed	0.0	0 1.93	3 0.90	0.	01	1.98	0.90	0.01	1.93	0.90	0.01	1.98	0.90
4	17 car break down on the road	0.2	7 0.28	3 0.28	0.	40	0.33	0.28	0.27	0.28	0.28	0.40	0.33	0.28
÷	18 truck break down	0.7	9 0.53	3 0.31	0.	96	0.58	0.31	0.79	0.53	0.31	0.96	0.58	0.31
ja se	19 truck accident	0.2	7 1.80) 0.46	0.	32	1.84	0.46	0.31	1.80	0.46	0.36	1.84	0.46
칠	20 car accident with one lane closed	0.1	8 0.38	3 0.30	0.	24	0.42	0.30	0.19	0.38	0.30	0.26	0.42	0.30
8	21 car accident with two lanes closed	0.0	5 0.57	0.55	0.	08	0.61	0.55	0.06	5 0.57	0.55	0.09	0.61	0.55
	22 car accident with three or more lanes closed	0.0	1 1.22	2 0.80	0.	01	1.26	0.80	0.01	1.22	0.80	0.02	1.26	0.80
5	23 car break down on the road	0.2	9 0.28	3 0.28	0.	42	0.33	0.28	0.29	0.28	0.28	0.42	0.33	0.28
÷	24 truck break down	0.8	4 0.53	3 0.31	1.	02	0.58	0.31	0.84	0.53	0.31	1.02	0.58	0.31
ja se	25 truck accident	0.2	9 1.80) 0.46	0.	34	1.84	0.46	0.33	3 1.80	0.46	0.38	1.84	0.46
a a	26 car accident with one lane closed	0.1	9 0.38	3 0.30	0.	25	0.42	0.30	0.21	. 0.38	0.30	0.27	0.42	0.30
8	27 car accident with two lanes closed	0.0	5 0.57	0.55	0.	08	0.61	0.55	0.07	0.57	0.55	0.10	0.61	0.55
	28 car accident with three or more lanes closed	0.0	1 1.22	2 0.80	0.	02	1.26	0.80	0.01	. 1.22	0.80	0.02	1.26	0.80
ú	29 car break down on the road	0.3	0 0.28	3 0.28	0.	43	0.33	0.28	0.30) 0.28	0.28	0.43	0.33	0.28
÷.	30 truck break down	0.8	8 0.53	3 0.31	1.	05	0.58	0.31	0.88	3 0.53	0.31	1.05	0.58	0.31
ia si	31 truck accident	0.3	0 1.80	0.46	0.	35	1.84	0.46	0.34	1.80	0.46	0.40	1.84	0.46
ad Iai	32 car accident with one lane closed	0.2	0 0.38	3 0.30	0.	26	0.42	0.30	0.22	2 0.38	0.30	0.28	0.42	0.30
8	33 car accident with two lanes closed	0.0	6 0.57	0.55	0.	09	0.61	0.55	0.07	0.57	0.55	0.10	0.61	0.55
	34 car accident with three or more lanes closed	0.0	1 1.22	2 0.80	0.	02	1.26	0.80	0.01	1.22	0.80	0.02	1.26	0.80

Analysis – regular conditions congestion duration

Reference (2030)	Alt 1+2	Alt 3
Lanes: S6 - N4	S5+2 – N3+4	S6 – N6

Results

Variant	Vehicle kilometers in the project area x 1,000,000 (km)	Total travel time delay in the project area x 10,000 (hours)
Reference 2012	3.61	0.59
Reference 2030	4.29	1.65
Alternative 1 +2	4.33 (+1%)	0.77 (-53%)
Alternative 3	4.34 (+1%)	1.49 (-10%)

		Expected number of incidents per workday		Average total o incident (vehic	delay per :le hours)	Total delay caused by all incidents per workday (vehicle hours)			
		Project area	Kp. Lun. – kp. Riinsw.	Project area	Kp. Lun. – kp. Riinsw.	Project area	Kp. Lun. – kp. Riinsw.		
	Ref. 2012	1.62	0.34	227	82	368	28		
*	Ref. 2030	1.99	0.42	462	512	919	215		
Τ .	Alt. 1	1.91	0.31	226	148	433	46		
**		(-4%)	(-27%)	(-51%)	(-71%)	(-53%)	(-78%)		
	Alt. 2	2.05	0.41	226	174	465	75		
((+3%;+7%)	(+2%;+32%)	(-51%; 0%)	(-66%; +18%)	(-49%;+7%)	(-65%;+63%)		
***	Alt 3	2.12	0.51	282	154	600	78		
		(+7%;+3%)	(+20%; +24%)	(-39%; +25%)	(-70%;-11%)	(-35%; +29%)	(-64%;+4%)		
* 7 lanes both directions parallel road structure + hard should TUDelft ** 7 lanes both directions parallel road structure + no hard should ** 7 lanes both directions parallel road structure + no hard should									

*** 6 lanes both directions + no hard shoulder

Interventions assignment (see how to measures Brithspace)

	Reg demand and supply	Dist. Proba- bility	Dist. duration	Dist. Cap reduction	Dist Impact
New road	х	X		X	Х
New lane	x	Х		Х	Х
Peak hour lane/hard shoulder	x	Х	X	x	
Dynamic route information panel	Х				x
C-ITS (intelligent vehicle safety systems)		x			
Road works at night					x
New asphalt				x	
Incident management			x		
Peak hour avoidance	x				
Modal shift trucks and cars	х				Х

Conclusion

- The impact of disturbances can be assessed using data an models
- Little is known about behavioural changes → assumptions about route choice effects
- Robustness/Resilience benefits should be considered in cost-benefit analysis
- Many interventions possible

Based on:

- Snelder, M., B. Wesseling, B. van Arem, B and M. Hertogh (2017) Evaluating the robustness of road networks in case of incidents for different topological and geometrical roadway designs. Transport Policy, Vo 57, pp. 20-30.
- Snelder, M., T. Bakri, B. Van Arem (2013) Delays caused by incidents; a data driven approach, in *Transportation Research Record: Journal of the Transportation Research Board*, 2333, pp. 1-8.
- Snelder, M., L.H. Immers, H.J. van Zuylen (2012) The best of two worlds

 a robust road network design method based on an optimization model
 and expert judgement, in: *Proceedings of the 5th International
 Symposium on Transportation Network Reliability*, Hong Kong.
- Snelder, M, H.J. van Zuylen, L.H. Immers (2012) A framework for robustness analysis of road networks for short term variations in supply, in: Transportation research part A, Volume 46, Issue 5, pp. 828–842.

m.snelder@tudelft.nl

