Reversible Crosslinking *a potent paradigm for designer materials*

Wouter G. Ellenbroek & Kees Storm

Eindhoven University of Technology Department of Applied Physics & Institute for Complex Molecular Systems

Project Harnessing Reversible Crosslinks for Toughness of Gels

Research Line

Reversible Crosslinks as a powerful motif in high tech materials

Who are we?

Costantino Creton (ESPCI)

TU/e Technische Universiteit Eindhoven University of Technology

Other members of group TPS Theory of Polymers and Soft Matter

Paul van der Schoot

Alexey Lyulin

Dynamic structures in nature: remodeling

http://treewright.blogspot.nl/2010/04/reaction-wood.html

Copyright © Nucleus Medical Media, Inc. U/e Technische Universiteit Eindhoven University of Technology

https://www.youtube.com/watch?v=atalSIZSuf8

Dynamic structures in synthetics: vitrimers

Vitrimers

As stable as thermosets As malleable as thermoplasts

http://www.univ-psl.fr/default/EN/all/psl_en/the_vitrimer.htm

Dynamic structures in synthetics: self-healing

Cordier et al., Nature **451**, 977–980 (2008).

Outline

- Crosslink dynamics ⇔ mechanical properties
- Recent experimental advances
- Our research questions
- Our modeling approach
- 3TU perspective

Strong and weak crosslinks

Reversible Crosslink: Any crosslink that can reform by itself after damage

Sun et al., Nat. Mater. 12 932 (2013)

Lifetime vs. Strength of Crosslinks

Lifetime vs. Strength of Crosslinks

intermediate-strength reversible crosslinks are most interesting for the mechanics

Gels with added reversible linkers

Stress and strain for various linkers

TU/e Technische Universiteit Eindhoven University of Technology

Z.S. Kean et al., Adv. Mater. 26 6013 (2014)

Stress and strain for various linkers

The "slow" (intermediate) linkers increase the strain-at-break and the toughness

Z.S. Kean et al., Adv. Mater. 26 6013 (2014) 12

I. How does the toughening work?

2. Why is the linear modulus unaffected while toughening is induced at larger strains?

3. How can we maximize the toughening effect?

Ideas: Rebinding and cooperativity

Relaxed

Under tension

Ideas: Clusters of Linkers

Multiscale approach

Step I understand dynamics of clusters of linkers **Step 2** effective description of linker clusters for network study

Coarse grained MD

- include permanent and reversible linkers
- vary composition
- vary lifetime of reversible linkers
- find strain-rate dependent stress-strain curves

Hybrid Langevin / MC model

- add linker clusters
- study strain-rate dependent mechanics

Reversible linkers in model collagen

Movie by Cyril Vrusch (Ph.D. student)

TU/e Technische Universiteit Eindhoven University of Technology

Design optimization

Perspective within 3TU

within the context of this project

Eindhoven Macromolecular and Organic Chemistry Delft Advanced Soft Matter Group (Chem.E) Engineering Thermodynamics Group (3ME) Twente Materials science and Technology of Polymers other topics?

Kees Storm

Function and soft mechanics of biomaterials

buckling of growing filaments (with Remy Kusters, L. Mahadevan)

cross-hatched ordering of collagen fibers (with Cyril Vrusch, Carlijn Bouten)

Paul van der Schoot

Kyrylyuk et al. Nature Nano 6 (2011), 364

Jamali et al. PRE 91 (2015), 042507

Self-assemby of soft and biomaterials

Alexey Lyulin

Focus on Nanocomposites

CNT, graphene – polyimide carbon black – rubber silica – rubber modified cellulose - PLA silica - Nafion fullerene - P3HT CNT – vitrimer epoxy

. . . .

Multiscale simulation of polymer dynamics

Formation of P3HT/PCBM solar cells

Responsive soft matter

Wouter Ellenbroek

disordered networks and composites on the verge of losing rigidity

Simple building blocks for unusual self-assembling structures

In short...

Technische Universiteit **Eindhoven** University of Technology

Netherlands Organisation for Scientific Research