4TU.HTM

Emergent phenomena in nonlinear

metamaterials

P. B. Silva*a, V. G. Kouznetsova^a, M. J. Leamy^b and M. G. D. Geers^a * Email: p.brandao.silva@tue.nl

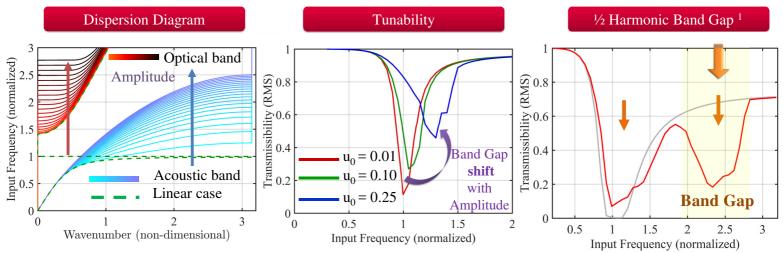
^a Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands ^b George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA

Introduction

Metamaterials are engineered structures in which the design of a meta-atom with specific dynamics gives rise to on-demand and unusual behavior of the artificial structure, making it possible to **manipulate waves**.

Research Objective

Reveal physical phenomena induced by **material nonlinearities** in **locally resonant metamaterials** and develop appropriated techniques for their analysis.


Methodology

Approximating techniques are used to describe the oscillatory motion of the nonlinear periodic system:

- □ Harmonic Balance method
- □ Method of Multiple Scales

Direct Numerical Simulations are performed in order to verify the approximating solutions.

Results

Model

Metamaterial

Heavy mass with **rubber**

coating

-1

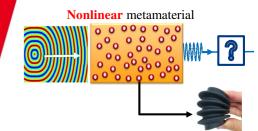
Local Force

-0.5

Discussions

Results provide understanding of the effect of material nonlinearity in local resonant metamaterials.

- ✓ Amplitude dependent band gap position.
- ✓ **Shifting** band gap due to hardening/softening.
- **Co-existence** of acoustic and optical modes
- ✓ Possibility of generating ¹⁄₂ harmonic band gap in case of asymmetric stress-strain relation.


Outlook

□ The features of nonlinear metamaterials make them promising for applications in: **sensor technology, imaging**, among others.

Develop a numerical scheme involving both time and space to be incorporated into the classical **Computational Homogenization**.

Reference: ¹Silva P. B., Kouznetsova V. G., Leamy M. J., Geers M. G. D. 2018. *Emergence of a subharmonic band gap in non-linear locally resonant metamaterials*. In preparation.

Nonlinear

stress-strain

Neo-Hookean

Sym. Soft

Sym. Hard

1

Strain

0.5

Linear