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• Good Absorption (UV-Vis)  

• 25% solar cell efficiency

• High dielectric constant

• 𝜀0 = 100

• 𝜀𝑖𝑛𝑓𝑡𝑦 = 7

• Excitons and Polarons

• Ultra-low thermal conductivity

• 𝜅 = 0.4 W/(mK)

• High thermal electric figure of merit 

• (ZT=~1-2)

• Bad material stability

Nano Electronic Materials
cluster 

MAPbI
3



N. Onoda-Yamamuro, T. Matsuo, and H. Suga, Calori-
metric and ir spectroscopic studies of phase transitions

in methylammonium trihalogenoplumbates (ii),
J. Phys. Chem. Sol. 51, 1383 (1990).
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Entropy-driven phase transitions

Internal Energy

Pressure

Temperature

Volume

Entropy

We want to do Isothermal-Isobaric simulations

and allow the system to minimize its free energy 
under constant p,T.



Ok, so let’s do first principles Molecular Dynamics

Start structure:
{Xi, Type i}

Solve TI Schrödinger 
equation 

(approximately)

Propagate structure in time:
vi(t+1/2)=vi(t-1/2)+Fi/mi*dt

Xi(t+1)=Xi(t)+vi(t+1/2)

{Fi}Xi(t+1)

Advantage:

- High Accuracy
- Predictive value
- Flexiblity
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Lahnsteiner et al., Physical Review B, 94, 214114 (2016)
Bokdam et al., Phys. Rev. Lett. 119, 145591 (2017)
Lahnsteiner et al., Phys. Rev. Mat., 2, 073604 (2018) 
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Ok, so let’s do first principles Molecular Dynamics

Start structure:
{Xi, Type i}

Solve TI Schrödinger 
equation 

(approximately)

Propagate structure in time:
vi(t+1/2)=vi(t-1/2)+Fi/mi*dt

Xi(t+1)=Xi(t)+vi(t+1/2)

{Fi}Xi(t+1)

Advantage:

- High Accuracy
- Predictive value
- Flexibility

Disadvantage:

- Compute intensive
- Slow
- Bad system size scaling

Consequence:
- No access to: thermal 

conductivity, phase 
transitions, non-
equilibrium MD, etc…

Lahnsteiner et al., Physical Review B, 94, 214114 (2016)
Bokdam et al., Phys. Rev. Lett. 119, 145591 (2017)
Lahnsteiner et al., Phys. Rev. Mat., 2, 073604 (2018) 



Include ML in first principles Molecular Dynamics

Start structure:
{Xi, Type i}

Solve TI Schrödinger 
equation 

(approximately)

Propagate structure in time:
vi(t+1/2)=vi(t-1/2)+Fi/mi*dt

Xi(t+1)=Xi(t)+vi(t+1/2)

{Fi}

Xi(t+1)

Advantage:

- High Accuracy
- Predictive value
- Flexibility

Disadvantage:

- Compute intensive
- Slow
- Bad system size scaling

(only in training!)

Consequence:
- Access to: thermal 

conductivity, phase 
transitions, non-
equilibrium MD, etc…
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Include ML in first principles Molecular Dynamics

Start structure:
{Xi, Type i}

Solve Schrödinger 
equation 

(approximately)

Propagate structure in time:
vi(t+1/2)=vi(t-1/2)+Fi/mi*dt

Xi(t+1)=Xi(t)+vi(t+1/2)

{Fi}
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Machine Learning 
Force Field

Accurate?

No

Yes

Train

AIM: 
Accurate First-Principles based Machine Learning 

model of the Potential Energy Surface: 
U(R1, R2, R3, …)

Not an automatic optimisation
of  classical force field parameters!

Advantage:

- High Accuracy
- Predictive value
- Flexibility

Disadvantage:

- Compute intensive
- Slow
- Bad system size scaling

(only in training!)

Consequence:
- Access to: thermal 

conductivity, phase 
transitions, non-
equilibrium MD, etc…



Attempt to describe (a smoothened version of) 

the Potential Energy Surface

Drawback, F does not have rotational invariance!

i

j

r
cut

Gaussian Approximation Potential (GAP): 
Bartok et al., Phys. Rev. Lett. 104, 136403 (2010)



SOAP: Bartok et al., Phys. Rev. B 87, 184115 (2013)

For descriptors X
i
and kernel K, we adapt a variant

of the Smooth Overlap Atomic Positions  (SOAP)

Attempt to describe the Potential Energy Surface

Increase until 
accuracy threshold 

is passed



Machine-Learning Force Fields (MLLF)

Similarity measure

R. Jinnouchi et al., Phys. Rev. Lett. 122, 225701 (2019)
R. Jinnouchi et al., Phys. Rev. B 100, 014105 (2019)

Dimension of      :

After fitting, the Energy, Forces and Stress (EFS) of structure with       can be calculated:

Dimension of      :



On-the-fly training

R. Jinnouchi et al., Phys. Rev. Lett. 122, 225701 (2019)
R. Jinnouchi et al., Phys. Rev. B 100, 014105 (2019)

Further tech. specification:

Assumption: effect of movement of atoms outside of the cut-off 
radii can be modelled by Gaussian distributed noise in the FP data.

Weights:

Uncertainty:

The optimization of w
iB

and the uncertainties are estimated by 

a regularised Bayesian linear-regression method.

Optimisation is important 
to prevent overfitting 

Design matrix, holds all 

EFS data of all reference structures



Machine-Learning Force Fields (MLLF)
Trained on-the-fly during isothermal-isobaric MD with SCAN DFA at 400 K

R. Jinnouchi et al., Phys. Rev. Lett. 122, 225701 (2019)
Effective speed-up ~1000x !



Machine-Learning Force Fields (MLLF)
Trained on-the-fly during MD with SCAN DFA

EXP: Whitfield et al., Sci. Rep. 6, 35685 (2016)

- Near first-principles accuracy
- Large system sizes
- Nanosecond time scales

Comparison to Experiment



Machine-Learning Force Fields (MLLF)
Trained on-the-fly during MD with SCAN DFA175 K

225 K

Movies:
dynamicsolids.net/sm/2019-mlff-perovskites



XY
plane

XZ
plane

Order 
Parameters

psuedo-cubic 
lattice constants

Movies:
dynamicsolids.net/sm/2019-mlff-perovskites

“Librational Pathways”



Model I: Frost et al., APL Materials 2, 081506 (2014) and Nature Comm. 6, 7124 (2015).
Model II: Tan et al., ACS Energy Lett. 2, 937 (2017).
Model III: Simenas et al., J. Phys. Chem. Lett. 8, 4906 (2017).

Monte-Carlo simulations analysed with order parameter M

Lahnsteiner et al., Phys. Rev. B 100, 094106 (2019)



Machine-Learning Force Fields (MLLF)
Error estimation

Can give new physical insight!



Machine-Learning Force Fields (MLLF)
Trained on-the-fly during MD with SCAN DFA

CsPbI3 and other Inorganic perovskites

MLFF: Jinnouchi et al., Phys. Rev. Lett. 122, 225701 (2019)
EXP: A. Marronnier et al. ACS Nano 12, 3477 (2018)

t: Goldschmidt tollerance factor



MLLF and NMR experiments: resolving more complex crystal structure

Grueninger et  al., J. Phys. Chem. C, 125, 1742-1753 (2021)

Calculate the NMR
1H-1H dipolar coupling coefficient 



Unpublished, Lahnsteiner & Bokdam (2021)

Outlook

Low T, Orthorhombic High T, Cubic

Example: CsPbBr3 (10,240 atoms, nanoseconds, microcanonical)

Near first-principles accuracy MLFFs allow us to go beyond the harmonic
approximation and study lattice dynamics on the ‘real’ potential energy surface of
complex Dynamic Solids by ‘listening’ to the system in large-scale molecular-
dynamics simulations.

Dynamic Structure
Factor

Harmonic phonons
(finite differences 
method)

M

R



Thermal conductivity: an active measurement?

Increasing complexity, how far can we go?

Outlook

• Ion transport in batteries
• Hydrogen storage
• Catalysis
• ….

Dynamic Solids



Thank you!

Questions?

P 30316-N27

Ference Karsai

Georg Kresse

Ryosuke Jinnouchi

Jonathan Lahnsteiner

Moved last year

dynamicsolids.net

Menno Bokdam


