TATA STEEL

Correlative Microscopy

13 December 2022 Sieger van der Laan

Together we make the difference

Introduction - Materials characterization

Starting point: Bulk analysis

- Chemical composition (XRF)
- Phase composition (QXRD)

Introduction - Materials characterization

Starting point: Bulk analysis

- Chemical composition (XRF)
- Phase composition (QXRD)

	FeO	27.1	23.3
	CaO	39.1	42.3
	SiO2	12.3	14.9
	MgO	9.5	8.9
VDF	MnO	4.1	4.1
XKF	Al2O3	1.1	1.0
	P2O5	1.5	1.8
	TiO2	1.0	0.9
	V2O5	-	0.8
	Cr2O3	-	0.2
	total	98.0	99.4

	Fe-Wuestite Fe(Mg)O	25.7	35.9	24.1	30.8
	Mg-Wuestite Mg(Fe)O	9.4		6.3	
	Magnetite Fe3O4	0.8		0.4	
	Iron met Fe	0.5		0.0	
	Srebrodolskite Ca2Fe2O5	18.0	18.0	12.3	12.3
	Hatrurite C3S	0.1		0.2	
QXRD	Larnite beta C2S Ca2SiO4	20.4	36.5	45.2	50.4
	alpha' C2S Ca2SiO4	15.9		4.8	
	alpha C2S Ca2SiO4	0.2		0.4	
	Lime CaO	2.8	3.2	4.5	4.7
	Portlandite Ca(OH)2	0.1		0.1	
	Calcite CaCO3	0.5		0.2	
	Aragonite CaCO3	0.1		0.3	
	Amorphous	5.4		1.2	

Sensitivity:

Introduction - Materials characterization

Starting point: Bulk analysis

- Chemical composition (XRF)
- Phase composition (QXRD)

And then: Microscopic information

- How to relate microscopic information to bulk information?
- How to correlate observations from different microscopes?

FeO	27.1	23.3
CaO	39.1	42.3
SiO2	12.3	14.9
MgO	9.5	8.9
MnO	4.1	4.1
AI2O3	1.1	1.0
P2O5	1.5	1.8
TiO2	1.0	0.9
V2O5	-	0.8
Cr2O3	-	0.2
total	98.0	99.4
	FeO CaO SiO2 MgO MnO Al2O3 P2O5 TiO2 V2O5 Cr2O3 total	FeO 27.1 CaO 39.1 SiO2 12.3 MgO 9.5 MnO 4.1 Al2O3 1.1 P2O5 1.5 TiO2 1.0 V2O5 - Cr2O3 - total 98.0

n	Fe-Wuestite Fe(Mg)O	25.7	35.9	24.1	30.8
ion	Mg-Wuestite Mg(Fe)O	9.4		6.3	
	Magnetite Fe3O4	0.8		0.4	
	Iron met Fe	0.5		0.0	
)	Srebrodolskite Ca2Fe2O5	18.0	18.0	12.3	12.3
	Hatrurite C3S	0.1		0.2	
	Larnite beta C2S Ca2SiO4	20.4	36.5	45.2	50.4
QXRD	alpha' C2S Ca2SiO4	15.9		4.8	
	alpha C2S Ca2SiO4	0.2		0.4	
	Lime CaO	2.8	3.2	4.5	4.7
	Portlandite Ca(OH)2	0.1		0.1	
	Calcite CaCO3	0.5		0.2	
	Aragonite CaCO3	0.1		0.3	
	Amorphous	5.4		1.2	

Light Optical Microscopy

- ZEISS AxioImager Z1
- Automated X-Z stage
- Polarized Reflected Light imaging
- Polished sample mount
- Larger area imaging with stitching of individual fields → mosaic

Optical Microscopy

- Full sample mosaic
- Zeiss Axio Imager Z1
- 5x objective
- Polarized reflected light
- Flat field correction
- White balance correction

 Three regions selected for more in depth investigation

- Three regions selected for more in depth investigation
- Zooming in...

- Three regions selected for more in depth investigation
- Each region has differing textural and phase properties

- Three regions selected for more in depth investigation
- Each region has differing textural and phase properties
 Zooming in...

Area 1

- ROI mosaic
- Zeiss Axio Imager Z1
- 20x objective
- Polarized reflected light
- Flat field correction
- Colour balance correction

SEM-EDS Backscatter & Spectral Imaging

- JEOL 7001
- Dual OXFORD detectors (SDD 2x170mm)

Optical Image-Electron Image Correlation

- ImageJ & BigWarp plugin
- Set landmarks between images
- Warp optical image to electron image
 - This is to align optical image, electron image, and Xray chemical (EDS) data

Phase Identification

- Understanding phases that are present
- Zooming in...

19

Phase Identification

- Understanding phases that are present
- Z-contrast shows several phases:
 - Dark grey
 - Medium grey
 - Light grey
 - Black (dust, pores, cracks)
- What are they?

20

Phase Mapping

- PARC—PhAse Recognition and Classification
- Simple phase mapping with 3 phases
- EDS data simplified into pixels with similar characteristics

Phase Mapping

- Useful for both qualitative and quantitative analysis
- Relationships between chemistry and structure
- Relationships between phases and chemical variation
- Phase abundances

	area %
wüstite	19.1
larnite	54.2
brownmillerite	26.7

Phase Mapping

- Useful for both qualitative and quantitative analysis
- Relationships between chemistry and structure
- Relationships between phases and chemical variation
- Phase abundances

	area %
wüstite	19.1
larnite	54.2
brownmillerite	26.7

(Semi-)Quantitative Chemical Composition

- Internally standardized EDS quantification using DTSA-II
- Spectra summed from phase interiors
 - Omits edge pixels for higher quality
- Bulk composition from phase abundances, compositions, and densities (assumed or measured)

Cr measured here is an EDS artifact you still need to know your sample!

major phase composition by area

		Area	a 1		Are	a 2		Are	a 3
	wüstite la	arnite b	orownmillerite	wüstite I	arnite	brownmillerite	wüstite	larnite	brownmillerite
(wt.%) P ₂ O ₅	0.0	3.9	0.0	0.0	3.8	0.0	0.0	3.9	0.0
V_2O_5	0.0	1.2	1.2	0.0	1.1	1.2	0.0	1.1	1.5
SiO ₂	0.9	27.3	1.4	0.7	26.8	1.5	0.0	27.1	1.3
TiO ₂	0.0	0.9	3.6	0.0	0.8	3.2	0.0	0.8	3.4
Al_2O_3	1.5	1.1	4.7	1.2	1.2	4.1	1.1	1.1	5.3
Cr ₂ O ₃	0.0	3.8	0.7	0.0	3.7	0.6	0.0	3.8	0.0
FeO _T	47.6	2.4	41.6	53.6	3.5	42.1	57.0	2.8	39.6
MgO	32.5	0.0	0.9	25.8	0.0	1.0	23.4	0.0	0.9
CaO	2.7	59.4	44.4	1.3	59.0	44.6	4.4	59.4	46.2
MnO	14.7	0.0	1.6	17.3	0.0	1.8	14.1	0.0	1.7
area %	19.1	54.2	26.7	15.4	51.3	33.3	17.4	53.7	28.9
density (g/cm ³)	5.3	2.9	3.7	5.3	2.9	3.7	5.3	2.9	3.7
mass %	28.2	44.1	27.7	22.9	42.2	34.9	25.9	44.0	30.1

bulk composition

	Area 1	Area 2	Area 3	XRF
P_2O_5	1.7	1.6	1.7	1.6
V_2O_5	0.8	0.9	0.9	0.8
SiO ₂	12.7	12.0	12.3	12.5
TiO ₂	1.4	1.5	1.4	1.0
AI_2O_3	2.2	2.2	2.4	1.1
Cr_2O_3	1.9	1.8	1.7	0.2
FeO _T	26.0	28.4	27.9	30.5
MgO	9.4	6.3	6.3	9.6
CaO	39.3	40.8	41.2	39.6
MnO	4.6	4.6	4.2	4.2

Compositional Space

 Element density plots help illustrate compositional domains/phases

Sensitivity: general

density plot from only wüstite pixels

Compositional Space

- Element density plots help illustrate compositional domains/phases
- And variation within a single compositional domain/phase

Compositional Space

- Element density plots help illustrate compositional domains/phases
- And variation within a single compositional domain/phase
- Colour LOM image can also be combined with EDS data to further discriminate phases

Hue, saturation and brightness

Minor/Trace Components

- V is mostly hosted in larnite and brownmillerite
- Selecting only very V-rich pixels shows V is also hosted in another phase
- Complex composition, possibly a glass

	V-rich phase (wt.%)					
	P_2O_5	15.63				
	V_2O_5	9.58				
	SiO ₂	10.72				
	TiO ₂	0.00				
	AI_2O_3	0.00				
	Cr_2O_3	1.18				
_	FeO _T	6.42				
	MgO	0.73				
	CaO	52.38				
	MnO	0.00				
	ZnO	1.86				
	CI	0.56				
	S	0.94				

EBSD

Laser Ablation ICP-TOFMS

- Time-of-Flight Mass-Spectrometer for trace element analysis with solid sampling by:
- 213 nm Nd-YAG laser spotsize 4-250µm
- 193 nm Excimer laser spotsize 5µm with
 500 Hz sampling rate
- Detection at: 50ppb Th, U, Pb, Bi, and at 10ppm Na, Mg, Al

Ytterbium (Yb) Element map

- Correlated with BSE image
- Qualitative map
 Red high
 White low
 Transparent < d.l.
- Precision ~1-2% at ppm level of concentration

Summary and Conclusions

Correlative microscopy

 Images from different microscope systems can be correlated with excellent spatial accuracy (within 0.1 µm) using routines in ImageJ/FIJI (shareware)

As demonstrated:

- Light optical microscopy serves to document large sample areas
- Detail areas can be analysed with Scanning Electron Microscopy and correlated with the LOM image
- Most useful are SEM Backscatter Electron, and Spectral Imaging (EDS)
- Spectral Images can be converted to phase distributions (using PARC)
- Electron Diffraction (EBSD) provides crystal-size and orientation
- Full area chemical information from microscopy is consistent with bulk chemical and phase analysis
 Future:
- Trace element distribution correlated with microstructure
- FTIR & Raman microscopy

Do you have any questions?

Tata Steel R&D

Knowledge group: Microstructure and Surface Characterization

www.tatasteeleurope.com