

High-Precision Laser Dilatometry Precipitation Processes in Titanium and Aluminium Alloys Method and Application

Martin Luckabauer University of Twente, ET, MS3

Dilatometry – seemingly a well-known method

Determination of **thermal expansion**:

$$L \cdot \alpha = \frac{\Delta L}{\Delta T}$$

Additional volume effects:

e.g. First-order Phase transitions

Advanced Techniques Free-volume kinetics (vacancies etc.)

Special Techniques

Deformation Dilatometer Quenching, etc.

2

Dilatometry – seemingly a well-known method

In theory dilatometry is the ideal method to study thermodynamic processes in materials:

Thermodynamic state variable Volume [V] easy to assess, can be measured in absolute terms Thermodynamic state variable Heat [Q] practically inaccessible, only changes are measurable

Historically industry has put very little effort in the improvement of Dilatometers, Calorimetry (e.g. DSC) was developed to a very advanced stage.

Pressing needs and questions in modern materials science:

- > Precipitation kinetics (multistage) in complex alloys
- Defect annihilation and formation (vacancies, dislocations, pores etc.)
- Isothermal measurements with useful measurement stability
- Slow processes long-time measurements
- Separation of kinetics and crystal lattice expansion (modulation)
- Optimized heating and cooling concepts

The advanced dilatometry project

Project Goals:

- Fast and precise temperature control exceeding the capabilities of available furnace concepts
- nm-resolution without the need for special sample geometry, based on laser interferometry
- Highest stability against environmental influences by using the latest interferometer technology: SIOS SP120DI
- Full implementation of sinusoidal
 temperature modulation into the controller
- Possibility for sample cooling (quenching)

Furnace Concept

Furnace Concept

Advantages

- "Cold wall" concept --> only Tungsten filament and sample (sampleholder) is heated. Water-cooled reflector stays at constant temperature.
- Control time constant is very low. Filament temperature change rate
 > 1000 K/s --> no deadtime in the control loop.
- > Due to the radiation focusing a very high heat flux can be achieved
- > No restrictions on the sample material

Disadvantages

- Tight tolerances and mirror like surface finish > challenging to produce
- Halogen lamps cannot operate in vacuum > complex cooling design

The finished furnace / sample holder assembly

The finished furnace / sample holder assembly

The finished setup

Case study 1: Time-Temperature-Precipitation behavior AW 6060

- Al-Mg-Si is one of the most widely used hardenable aluminum alloy systems.
- After solid solution annealing and quenching and depended on the annealing temperature, a variety of metastable phases form on the way to the stable Mg2Si phase.

- In principle the precipitation process causes an isothermal volume change at the aging temperature.
- The direct observation of this volume change would directly depict the precipitation sequence and lead to the ideal time temperature combination for a maximum of β"-phase.
- HOWEVER: The effect is expected to be in the sub-μm regime for reasonable sample sizes (< 30 mm) and takes hours to days.</p>

Complete heat treatment cycle was performed in the dilatometer:

Solutionizing: 540 °C 25 min	Step 1
He-quench to RT	Step 2
Holding for 4 min	Step 3
Heating to variable annealing temperature at 300 K/min	Step 4

The volume change is clearly visible and corresponds to the hardness change.

M. Luckabauer, E. Hengge, G. Klinser, W. Sprengel, R. Würschum, Magnesium Technology 2017 1, 669-674 2017

Complete heat treatment cycle was performed in the dilatometer:

Solutionizing: 540 °C 25 min	Step 1
He-quench to RT	Step 2
Holding for 4 min	Step 3
Heating to variable annealing temperature at 300 K/min	Step 4

The volume change is clearly visible and corresponds to the hardness change.

Complete heat treatment cycle was performed in the dilatometer:

Solutionizing: 540 °C 25 min	Step 1
He-quench to RT	Step 2
Holding for 4 min	Step 3
Heating to variable annealing temperature at 300 K/min	Step 4

The volume change is clearly visible and corresponds to the hardness change.

Complete heat treatment cycle was performed in the dilatometer:

Solutionizing: 540 °C 25 min	Step 1
He-quench to RT	Step 2
Holding for 4 min	Step 3
Heating to variable annealing temperature at 300 K/min	Step 4

The volume change is clearly visible and corresponds to the hardness change.

Phase formation process can be monitored down to rates of **0.5 nm/h**

Precipitate formation in Al-Mg-Si (AW6060) Analaysing the Results

E. Hengge, R. Enzinger, M. Luckabauer, W. Sprengel & R. Würschum, Philosophical Magazine Letters, **98:7**, 301-309, 2018

17

TTP diagram Al-Mg-Si (AW6060)

By analyzing the measurement results an

Isothermal TTP diagram can easily be drawn

Here the **symbols** correspond to **98% phase fraction** and the **dashed lines represent 60%**

R. Enzinger, E. Hengge, W. Sprengel et al., J Mater Sci 54, 5083–5091 2019

Case study 2: Influence of Oxygen on the Kinetics of ω and α Phase formation in β Ti-V

ω phase formation in β Ti matrix (Ti-21V)

w phase forms by a collapse of ever second (111) pair of the β phase

The formation of ω precipitates leads to **embrittlement**, often to a **total loss of ductility**

M. Tane, H. Nishiyama, A. Umeda, N. L. Okamoto, K. Inoue, M. Luckabauer, Y. Nagai, T. Sekino, T. Nakano, and T. Ichitsubo Phys. Rev. Materials **3**, 043604

HAADF-STEM image taken along the [011] β direction β phase (B: blue) and domains 1 (G: green) and 2 (R: red) of the ω phase

Kinetics of $\boldsymbol{\omega}$ phase formation in Ti-21V

21

OF TWENTE.

Kinetics of α phase formation in Ti-21V

The formation process of both phases is **easily resolved** and can be analyzed in terms of time constants

TTP diagram of $\boldsymbol{\omega}$ phase formation in Ti-21V

Applying Austin-Rickett kinetics:

The **influence of oxygen** on the formation kinetics of ω was'**quantified for the first time**

Shape also indicates the expected crossover in kinetics of ω formation

- Novel dilatometric techniques have the potential to clarify long standing issues
- In combination with modern microscopic techniques the method has unparalleled potential
- The direct isotherm replication and assessment allows for time-temperature optimizations and, consequently Time and Energy savings
- Increase in resolution and measurement stability to allow for isotheral dilatometric measurements is possible

Application to novel and established alloy systems as well application in fundamental research projects.

Appendix

Modelling the AW6060 data

2 rate approach (beta' only forms from beta")

Rate equations for the phases

$$\dot{c}_{\beta''}(t) = k_1 \Big\{ c_0 - \Big[c_{\beta''}(t) + c_{\beta'}(t) \Big] \Big\} - k_2 c_{\beta''}(t) , \qquad (1)$$

$$\dot{c}_{\beta'}(t) = k_2 c_{\beta''}(t) , \qquad (2)$$

Eq. 1 representing JMAK kinetics with n=1 for the formation β''

Solution with initial zero concentration of both phases:

$$c_{\beta''}(t) = c_0 \frac{k_1}{k_2 - k_1} \left\{ \exp(-k_1 t) - \exp(-k_2 t) \right\}, \quad (3)$$
$$c_{\beta'}(t) = c_0 \frac{1}{k_2 - k_1} \left\{ -k_2 \exp(-k_1 t) + k_1 \exp(-k_2 t) \right\} + c_0.$$

C_0 is the maximum molar fraction of beta' (from alloying elements and measurements)

R. Enzinger, E. Hengge, W. Sprengel et al., J Mater Sci 54, 5083–5091 2019

3 rate approach (beta' forms from beta" and beta' can directly form, presumably at defects)

$$\dot{c}_{\beta'_{\rm dir}}(t) = k_3 \left\{ c_0 - \left[c_{\beta''}(t) + c_{\beta'}(t) + c_{\beta'_{\rm dir}}(t) \right] \right\}$$
(7)

Solutions then read:

$$c_{\beta''}(t) = c_0 \frac{k_1}{k_2 - (k_1 + k_3)} \left\{ \exp(-(k_1 + k_3)t) - \exp(-k_2t) \right\},$$
(8)

$$c_{\beta'}(t) = c_0 \frac{1}{k_2 - (k_1 + k_3)} \left\{ -\frac{k_2 k_1}{k_1 + k_3} \exp\left(-(k_1 + k_3) t\right) + k_1 \exp(-k_2 t) \right\} + c_0 \frac{k_1}{k_1 + k_3} .$$
(9)

$$c_{\beta'_{\rm dir}}(t) = c_0 \frac{k_3}{k_1 + k_3} \left\{ 1 - \exp(-(k_1 + k_3) t) \right\},\tag{10}$$

R. Enzinger, E. Hengge, W. Sprengel et al., J Mater Sci 54, 5083–5091 2019

Modelling the TiV data

Length change due to (spinodal) **decomposition**:

$$\left(\frac{\Delta L}{L_{0}}\right)_{\text{decomp.}} = \frac{1}{3} x_{\beta_{l}} \left(\frac{a_{\beta}^{3}(c_{V,\beta_{l}},T)}{a_{\beta}^{3}(c_{V,0},T)} - 1\right) + \frac{1}{3} x_{\beta_{r}} \left(\frac{a_{\beta}^{3}(c_{V,\beta_{r}},T)}{a_{\beta}^{3}(c_{V,0},T)} - 1\right) \qquad [1] = \left(\frac{\Delta L}{L_{0}}\right)_{\beta_{l}} + \left(\frac{\Delta L}{L_{0}}\right)_{\beta_{r}},$$

Length change due to ω formation:

$$\begin{split} \left(\frac{\Delta L}{L_0}\right)_{\omega-\text{form.}} &= \frac{1}{3} x_\omega \left(\frac{\frac{1}{3}\frac{\sqrt{3}}{2}a_\omega^2(c_{V,\omega},T)c_\omega(c_{V,\omega},T)}{\frac{1}{2}a_\beta(c_{V,0},T)} - 1\right) \\ &\quad + \frac{1}{3} x_{\beta_r} \left(\frac{a_\beta^3(c_{V,\beta_r},T)}{a_\beta^3(c_{V,0},T)} - 1\right) \\ &\quad = \left(\frac{\Delta L}{L_0}\right)_\omega + \left(\frac{\Delta L}{L_0}\right)_{\beta_r}, \end{split}$$

R.J. Enzinger, M. Luckabauer, N.L. Okamoto *et al.* Influence of Oxygen on the Kinetics of Omega and Alpha Phase Formation in Beta Ti–V. Metall Mater Trans A, 2022, https://doi.org/10.1007/s11661-022-06881-1

Length change due to ω to α transformation:

$$\frac{\Delta L}{L_{0}} \Big|_{\omega-\text{to}-\alpha-\text{transform.}} = \frac{1}{3} x_{\alpha} \left(\frac{\frac{1}{2} \frac{\sqrt{3}}{2} a_{\alpha}^{2}(T) c_{\alpha}}{\frac{1}{2} a_{\beta}^{3}(c_{V,0},T)} - 1 \right) \\
+ \frac{1}{3} (x_{\omega}^{0} - x_{\alpha}) \left(\frac{\frac{1}{3} \frac{\sqrt{3}}{2} a_{\omega}^{2}(c_{V}^{0}, \omega, T) c_{\omega}(c_{V}^{0}, \omega, T)}{\frac{1}{2} a_{\beta}^{3}(c_{V,0},T)} - 1 \right) \\
+ \frac{1}{3} x_{\beta_{r}}^{0} \left(\frac{a_{\beta}^{3}(c_{V,\beta_{r}},T)}{a_{\beta}^{3}(c_{V,0},T)} - 1 \right) \\
= \left(\frac{\Delta L}{L_{0}} \right)_{\alpha} + \left(\frac{\Delta L}{L_{0}} \right)_{\omega} + \left(\frac{\Delta L}{L_{0}} \right)_{\beta_{r}}.$$
[3]

28 UNIVERSITY OF TWENTE

Modelling the TiV data

Austin-Rickett kinetics:

$$\alpha(t) = 1 - \frac{1}{\left(k(T)t\right)^{n_{AR}} + 1},$$

Fitting function for the obtained results:

$$f(t) = A\alpha(t) + f_0 = A\left\{1 - \frac{1}{\left(k(T)t\right)^{n_{AR}} + 1}\right\} + f_0, \quad [5]$$

UNIVERSITY

OF TWENTE.

R.J. Enzinger, M. Luckabauer, N.L. Okamoto *et al.* Influence of Oxygen on the Kinetics of Omega and Alpha Phase Formation in Beta Ti–V. Metall Mater Trans A, 2022, https://doi.org/10.1007/s11661-022-06881-1

[4]

Modelling the TiV data

