Advanced computational tools for the analysis and design of metamaterials

Alejandro M. Aragón

Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, the Netherlands

Test case: Design a waveguide to eliminate crosstalk in ultrasound flowmeters

Crosstalk is mitigated by a phononic crystal waveguide with large bandgap at 1 MHz

Phononic crystal waveguide

- Multiple objectives;
- Heavy mesh burden;
- Even heavier *trial-and-error* optimization.

ANALYSIS

DESIGN

SCALABILITY

Topology optimization of microfluidic mixers Andreasen and Sigmund, Int J Numer Meth Eng (2009)

complex

Giga-voxel resolution topology optimization Aage *et al.*, Nature (2017)

large

small

simple

problem
complexity

DESIGN

SCALABILITY

ANALYSIS

Enriched FEA has been developed for many problems with discontinuities

Interface and damage mechanics Aragón et al., J Mech Phys Solids (2013)

Immersed boundaries (fictitious domains) van den Boom *et al.* Int J Numer Meth Eng (2019)

Contact mechanics Liu et al., Comput Mech (In Press)

Fracture mechanics Yang and Aragón, Int J Numer Meth Eng (In Preparation)

Enriched topology optimization was first used to minimize compliance

Enriched topology optimization was first used to minimize compliance

• van den Boom et al., Struct Multidiscipl Optim (2020)

DESIGN

Phononic crystals (PnCs) and acoustic/elastic metamaterials (A/E MMs)

Level set optimization with an initial hole seed is sensitive to initial design

Level set optimization with an initial hole seed is sensitive to initial design

14

We used the technique to create bandgaps between different bands

initial design (no bandgap)

bandgap between 3rd and 4th bands

bandgap between 6rd and 7th bands

bandgap between 7rd and 8th bands

• van den Boom et al., J Mech Phys Solids (In Preparation)

Mechanical metamaterials with tailored fracture resistance

Most fracture-based topology optimization mitigate the effect of predefined crack

Evaluating energy release rates at along the boundary would require custom-made meshes to capture stress singularities—thus **intractable**!

We proposed a topology optimization that incorporates linear elastic fracture mechanics

We proposed a topology optimization that incorporates linear elastic fracture mechanics

fracture-based

stress-based

We proposed a topology optimization that incorporates linear elastic fracture mechanics

fracture-based

stress-based

• Zhang et al., Comput Methods Appl Mech Eng (2022)

We used topology optimization for fracture anisotropy in chocolate

• Minimize/maximize energy release rate:

$$J = \omega \frac{1}{N} \sum_{i=1}^{N} G_{1i} - (1-\omega) \frac{1}{N} \sum_{i=1}^{N} G_{2i}$$

 $\omega = 0$

 $\omega = 0.5$

 $\omega = 1$

We used this technique to optimize for fracture anisotropy in chocolate

• Souto et al., Edible Edible mechanical metamaterials with designed fracture for mouthfeel control. Soft Matter (2022).

Fracture metamaterials are being tested for fracture anisotropy

Conclusions

- Exploring the vast geometry-property design space undoubtedly mandates for efficient computational tools;
- Enriched FEA can effectively be used to analyze challenging problems by decoupling discontinuities from the mesh, saving on 80% of the time;
- Enriched FEA for topology optimization (TO) delivers black-and-white designs that are smoother than standard TO;
- We started using enriched TO for designing metamaterials with promising results;
- Machine learning will further enhance the design capabilities of these procedures.

- A. Souto, J. Zhang, A.M. Aragón, K.P. Velikov, and C. Coulais. "Edible Edible mechanical metamaterials with designed fracture for mouthfeel control." *Soft Matter (2022);*
- J. Zhang, F. van Keulen, and A. M. Aragón. "On Tailoring Fracture Resistance of Brittle Structures: A Level set Interface-enriched Topology Optimization Approach." *Comput Methods Appl Mech Eng* (2022);
- S. J. van den Boom, F. van Keulen, and A. M. Aragón. "Fully decoupling geometry from discretization in the Bloch-Floquet finite element analysis of phononic crystals." *Comput Methods Appl Mech Eng* (2021);
- S. J. van den Boom, J. Zhang, F. van Keulen, and A. M. Aragón. "An Interfaced-enriched Generalized Finite Element Method for level set based topology optimization." *Struct Multidiscip Optim* (2020);
- A. M. Aragón, B. Liang, H. Ahmadian, and S. Soghrati. "On the stability and interpolating properties of the Hierarchical Interface-enriched Finite Element Method." *Comput Methods Appl Mech Eng* 362 (2020), pp. 112671;
- S. J. van den Boom, J. Zhang, F. van Keulen, and A. M. Aragón. "A Stable Interface-Enriched Formulation for Immersed Domains with Strong Enforcement of Essential Boundary Conditions." *Int J Numer Meth Eng* 120 (2019), pp. 1163–1183;
- J. Zhang, S. J. van den Boom, F. van Keulen, and A. M. Aragón. "A Stable Discontinuity-Enriched Finite Element Method for the Analysis of 3-D Problems with Weak and Strong Discontinuities." *Comput Methods Appl Mech Eng* 355 (2019), pp. 1097–1123;
- A. M. Aragón and A. Simone. "The Discontinuity-Enriched Finite Element Method." *Int J Numer Meth Eng* 112.11 (2017), pp. 1589–1613;
- S. Soghrati, A. M. Aragón, C. A. Duarte, and P. H. Geubelle. "An interface-enriched GFEM for problems with discontinuous gradient fields." *Int J Numer Meth Eng* 89.8 (2012), pp. 991–1008.

