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(Electro-)Catalysis for a sustainable future

= R
@0) andm

hydrogenation

H, storage

3
- r°

Fuel storage Chemicals, materials

combustion-powered trat

Fig. 1. Sustainable energy future. Schematic of a sustainable energy landscape based on electrocatalysis.
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Electrocatalytic challenges — CO , electroreduction

Table 1. Main Products of the Electrochemical Reduction of CO,”

E" (V versus RHE)

product name and formula k n m
carbon monoxide, CO 1 2 1 —0.10
formic acid, HCOOH 1 2 0 —020 (for pH < 4); —0.20 + 0.059[pH-4] (for pH > 4)
formaldehyde, HCHO 1 4 1 —0.07
methanol, CH,OH 1 6 1 0.02
methane, CH, 1 8 2 017
ethanol, CH,CH,OH 2 12 3 0.09
ethylene, C,H, 2 12 4 0.08

“The coefficients k, n, and m in eq 1 are provided in each case together with the standard equilibrium potentials.

kCO, + n(H" + e7) 2 P + mH,0

= Equilibrium potentials are far off from the actual
onset potentials measured in CO, reduction.

nnD cat

Energy

CO +H,0

= High overpotentials are the result of inappropriate
adsorption energies of key reaction intermediates:
need for better electrocatalysts.

Reaction coordinate
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Electrochemical CO , reduction on metal electrodes

Different electrocatalysts produce different products: co, _—-} a(;o

~

-CO: Au>Ag>Cu>2Zn >> Cd>Sn>In>Pb>TIl=Hg ;
\\ formic acid

- HCOOH: Cd, Sn, In, Pb, Tl, Hg, Bi

(
- C,H,’s: Cu ('i ¢

methane ethylene
Sp group metals d group metals
* Include the principal group * Include transition metals with

metals and metals with a d1° unfilled d orbitals.

electronic configuration.
* Produce CO,4 on surface.

 Make formic acid and
oxalate (s?) and CO (d19).

'i"u Delft Whipple, D.T,K.; Kenis P.J.A. J. Phys. Chem. Lett., 2010, 1, 3451.
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Current Efficiency (%)

Electrochemical CO , reduction on copper
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1—e— Acetaldehyde
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Copper is the only catalytic material
able to produce hydrocarbon products,
such as methane and ethylene, with
decent efficiencies.

Recent observation of 16 different
products from CO, reduction reveils
the complexity of this reaction as well
as its possibilities.

Product formation is very potential
dependent and copper shows an
overall poor selectivity towards any
product.

Kuhl, K.P.; Cave, E.R.; Abram, D.N.; Jaramillo, T.F., Energy Environ. Sci., 2012, 5,

7050-7059.
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Altering product selectivity of Cu — Organic additiv e/film

Without additive With additive .
i ‘ e co, High C,

| — = e WLy ) ey Low H,, CH
= @ o N@ — W 2 R
! 1

CN? A modified Cu
¢ - N electrode :
- dl —
05 ~©—N;>8H<;\N‘©_ [ electrochemically deposited film |
2

Cu electrode

Compound CH , C,H, C,H;OH C;H,OH CO H, HCOO™ € Total j (mA/cm 2)
No additive  20.2 12.4 7.2 2.8 17 428 4.7 22.4 96.4 1 -4.59
1 11 40.7 30.5 10.0 1.0 18.1 7.1 80.2 107.8 70 -1.02

Faradaic Efficiencies (%) o _
22
CH,

= N-aryl pyridinium additives were tested for their ability to promote electrochemical CO,
reduction. The organic molecules were reduced and formed an organic film on the

electrode surface.

= The organic film blocked the formation of hydrogen and C, products on the copper
electrode, thereby increasing the selectivity of C,, products from 22% to 80%.
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CO, reduction to hydrocarbons — Electrochemical Fischer- Tropsch?
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» |f a catalyst binds CO too weakly, CO will desorb before this protonation can take place,
while if a catalyst binds CO too strongly, HCO or COH formation is thermodynamically
unfavorable.

= Can we develop novel catalysts by combining a metal wich binds CO too strongly (Pd)
with a metal which binds CO too weakly (Au)?
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CO, reduction to hydrocarbons — Electrochemical Fischer- Tropsch?
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= By combining Pd with Au, we were able to create the first catalyst that is able to produce
C,;-C; hydrocarbons.
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N-doped carbon electrocatalysts for CO , conversion

CO, Cco Shilong Fu
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Biomass-derived carbon-based catalysts for CO  ,R performance
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Biomass-derived carbon-based catalysts for CO

,R performance
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Take-away messages

= The electrochemical reduction of CO, to valuable chemicals or fuels can close the carbon
cycle, provide a means of energy stovffrage and a route for renewable production of
chemicals

= New electrocatalytic materials need to be developed for this reaction to be economically
feasible.

= Bimetallic electrocatalysts can be used designed to alter product selectivities and, in
some cases, alter the product distribution.

= Carbon-based catalytic materials, for instance biomass-derived, can provide cheap and
stable alternatives and can produce CO with high selectivities.
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Questions?

Well; that's clear:
Electrocatalysis has
real potential!

CONTACT

@ Dr. Ruud Kortlever
@ r.kortlever@tudelft.nl

+31 (0)15-2786640
www.kortlevergroup.com
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