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provides a crucial new understanding directly applicable to

industrial processing of gel-based products.

2 Yielding dynamics at multiple scales

Colloidal gels have different structural features at clearly sepa-

rable length-scales. At the microscale, the attractive particles

aggregate to form gel strands, at the mesoscale, gel strands

form a percolated network structure and at the macroscale the

gel is a homogeneous material. These levels of structure are

visible in a confocal microscope image of a colloidal gel

comprising 1.1 mm particles at a volume fraction f ¼ 0.12 in

formamide/sulfolane depleted by 50 mg ml"1, 500 kDa dextran16

(Fig. 1a). It has been previously shown that these hierarchical

structures strongly affect the moduli of gels,17 suggesting that

they may also be pivotal to other mechanical properties including

the delayed failure.

To describe the delayed yielding of these hierarchically struc-

tured materials, we model the system at multiple scales. A

particle-level model describes the stress-enhanced bond dissocia-

tion. A strand-level model considers the collective dissociation/

association dynamics of bonds at the neck of a gel strand and

yields the strand dissociation rate. A macroscopic model relates

the macroscopically applied stress to the strand dissociation rate

and predicts the degradation of the material before damage

localization and macroscopic failure.

2.1 Particle-level model

A colloidal particle of the formed gel is trapped in a potential well

resulting from interactions with its neighbors. Within this

potential well, irregular forces caused by thermal fluctuations of

the surrounding medium induce particle vibrations, which can

lead to the dissociation of a colloid–colloid bond. By considering

the diffusion equation for the density distribution of particles in

a colloid–colloid interaction potential, the dissociation rate of

bonds can be derived.18 When no external force is applied across

the bond, the dissociation rate becomes kD ¼ u0 exp("EA/kBT),

where u0 is the attempt frequency, EA is the depth of the

potential well, kB is the Boltzmann constant and T is the absolute

temperature. The frequency u0 depends on the diffusivity of the

particles and the shape and depth of the potential barrier.18

When a force f is applied across the weakly attractive bond, the

energy barrier is lowered19 and the dissociation rate is modified,

becoming20

k
0

D ¼ kD exp

!
f d

kBT

"
; f d\EA; (1)

where d is the characteristic width of the interaction potential.

Here, the work performed by the applied force is approximated

by fd. This model for the kinetics of bond dissociation has been

experimentally verified for weakly attractive molecular systems.21

It should be mentioned that applying a force across the colloid–

colloid bond slightly modifies u0.
22 This effect is neglected in the

present model.

2.2 Strand-level model

If the cross-section of a strand includes several particles, many

dissociation events are required for a strand to break (Fig. 1b and

c). Due to thermal fluctuations, bonds also reform at an associ-

ation rate kA, which is assumed to be independent of the applied

stress. Since the thickness of a strand varies along its length, it is

assumed that fracture will occur at an existing ‘‘neck’’, the

weakest point along its contour, that has a cross-section of

n bonds. The integer number of intact bonds at the neck is

denoted by j ˛ [0,n].

During the rupture of a single strand, we assume that the

macroscopic stresses are constant; which is achieved experi-

mentally in so-called creep experiments. Even so, the force on the

breaking strand may not be constant. When some of the bonds

break at the neck of a straight strand, the tensile stiffness of the

strand is significantly reduced, simply because the strand stiffness

is the harmonic mean of the stiffness of its cross-sectional slices.

When a straight strand weakens, the force it carries is redis-

tributed to adjacent strands; as a result, the boundary conditions

of the breaking strand is best described as a constant deforma-

tion. For a non-straight strand loaded in tension, elastic bending

energy is distributed over the whole strand, not just its neck.

Consequently, bonds breaking at the neck do not significantly

change the apparent tensile stiffness of the strand; non-straight

strands are thus subjected to constant force boundary conditions

during fracture. Therefore, we explore two scenarios for strand

rupture events: constant strand force F, or constant strand

deformation, which corresponds to a constant bond force f.

We begin by examining the high stress limit, when k
0

D [ kA,

at constant deformation of the strand. In this case, association

events are rare and negligible. The probability that a single

bond is still intact at time t after the application of a static load is

p1(t) ¼ exp("k
0

Dt). Then, the probability that a strand with

a cross-section of n particles is still intact at time t becomes

Fig. 1 (a) Representative confocal microscope image of a colloidal gel of

volume fraction f¼ 0.12. Note the three levels of structure: particle-level,

strand-level and homogeneous macroscopic level. (b) Schematic illus-

tration of two simultaneously detached colloid–colloid bonds (striped

particles) at the neck of a strand. (c) Illustration of broken strand with

seven broken bonds.
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Local particle rearrangements

Bissig et al., PhysChemCom., 2003.

Ultraslow relaxations measured with DWS
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Van Doorn et al., Phys. Rev. Lett., 2017
Wu et al. ACS App. Mat. Int. 2020

Local particle rearrangements

Particle displacements measured with 
confocal microscopy
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attraction

Heterogeneous dynamics!

4

FIG. 4. (color online) a) Single-particle mean-squared dis-
placement at t = 498 s as a function of particle connectivity
Z from experimental data (symbols) and as predicted by the
model described in the text (solid lines) for cp = 34.1 (cir-
cles) and 37.1 mg/ml (squares). b) Comparison between ex-
perimental ensemble-averaged h�r2i (symbols) and that pre-
dicted by Equation 3 without adjustable parameters (solid
blue line). Solid gray lines are the contributions to the mean-
squared displacements as a function of particle coordination
number with (top-to-bottom) Z = 0, 2, 4, 6, 8, 10, as pre-
dicted by Eq. 2.

indeed significantly faster than debonding, thus confirm-
ing the validity of the assumption that ka � kd,1.

The e↵ective bonding energies we need to fit the data
in proximity to the gel point are of the order of ⇠ 5 kBT ;
these values are almost an order-of-magnitude lower than
the depth of the depletion attraction calculated with the
Asakura-Oosawa model [22], which assumes only hard
sphere repulsions. We attribute this to the still signifi-
cant electrostatic repulsion known to act between PMMA
particles in apolar solvents even in presence of the TBAB
electrolyte [16].

These data illustrate the intimate link between single-
particle dynamics and local connectivity. To further sub-
stantiate these findings we probe the evolution of the
coordination number for a single particle as a function
of time. For a weakly connected particle, strongly in-
termittent fluctuations occur between bonded Z > 0 and
unbonded Z = 0 states (Fig. 5a); the continuous debond-
ing and di↵usion allows the particle to travel significant
distances over the course of several minutes before it ex-
its the field-of-view (Fig. 5c). By contrast, a strongly
coordinated particle shows fluctuations in coordination
number of ±1 (Fig. 5b), but remains connected over the
entire length of the experiment of 5000s, and as a conse-
quence only exhibits strongly localised positional fluctu-
ations (Fig. 5d).

Finally, with a quantitative microscopic description
for the e↵ect of connectivity on single-particle dynamics
(Eq.2), we attempt to reconstruct the ensemble-averaged
mean-squared displacement. To do so, we must weight
the ensemble-average using the distribution of coordina-
tion numbers P (Z) as a weighting function:

h�r2(t)i =
X

Z

P (Z)�r2(Z, t) (3)

With the values of U and !0⌧f determined from our ex-

FIG. 5. (color online) Thermally-activated fluctuations in the
coordination number Z of a single particle (a,c) and the cor-
responding particle displacement �r (b,d) for a weakly con-
nected (a-b) and highly connected (c-d) particle in the same
gel at cp = 37.1 mg/ml. Note that the trajectory length is
much shorter for the weakly connected particles as it di↵uses
out of the field-of-view after ⇠ 700 s.

perimental data (Fig. 4a) and P (Z) obtained directly
from the static structure of the gel (Fig. 1c), we can
now predict the ensemble-averaged MSD. Indeed, with-
out adjustable parameters, we find that the reconstructed
h�r2(t)i based on our model for single particle dynam-
ics is in reasonable quantitative agreement with the
ensemble-averaged MSD determined directly from exper-
iments (Fig.4b). This highlights the self-consistency of
our description. Moreover, it enables us to deconvolve the
ensemble-average into the di↵erent populations of parti-
cles with di↵erent local coordination numbers Z (solid
gray lines, Fig.4b). This provides a direct and quan-
titative explanation for the distinct dynamical hetero-
geneities characteristic of colloidal gels.
We have presented experimental data and theoretical

analysis that explains how the heterogeneous dynamics
of colloidal gels derives from the large inhomogeneities in
local connectivity. The quantitative description of single-
particle dynamics based on the local structure could form
a stepping stone to develop microscopic descriptions of
processes, such as aging, syneresis or stress-induced fa-
tigue, in which the local microstructure evolves over time
under the action of thermally-actived particle rearrange-
ments. In our current description, we have only consid-
ered particle rearrangements to occur through debonding
and reassociation onto the gel network. Even though this
provides a reasonable approximation, given the agree-
ment between our experiments and the model, other
thermally-actived modes of particle motion, such as the
sliding of a particle along a gel strand without debonding
entirely may exist. Increasing the attraction range, will
make these types of rearrangements more likely to occur;
extending our model to account for these ”sliders”, could
lead to a more generalized descripion of local dynamics
that is applicable to a wide range of disordered network
materials, even those in which the local connectivity must
be preserved [23].

Strong 
attraction

(particle coordination number)
Van Doorn et al., 
Phys. Rev. Lett., 2017

Wu et al. ACS App. Mat. Int. 2020
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Brittle failure in colloidal concrete (Breskens) Ductile failure in cheese 

13

Yielding under stress
Constant 
stress

Cho et al., Soft Matter., 2022
Grenard et al. Soft Matter 2014.

decreases linearly with ! [9]; this manifests as an expo-
nential dependence of "d on !, which is indeed observed
for polymeric networks loaded in shear [7] or bending [6].
To test whether this microscopic prediction holds for col-
loidal gels, we plot "d as a function of ! on a semilogar-
ithmic plot, where the error bars represent the standard
deviation across at least three independent measurements
(triangles, Fig. 2). Surprisingly, rather than the single
exponential decay, we observe two distinct exponential
regimes for our presheared gels.

To account for the more complex behavior observed for
colloidal gels, we generalize the bond-rupture model [7].
Within this model "d is approximated by the time required
for the rupture of a single bond due to thermal fluctuations.
The rate of this rupture is increased by the applied stress.
However, this picture is based on the behavior of a single

bond; it ignores the actual structure of a colloidal gel. In
contrast to the structure of a polymeric gel, colloidal gels
are highly heterogeneous: particles aggregate into a net-
work of mesoscopic strands which form a mechanically
stable, percolating network. These strands can be many
particles wide; therefore, they do not break directly when
only a single bond ruptures. Instead, their integrity is
maintained by the adjacent bonds, and thermal fluctuations
can lead to reformation of a broken bond. Catastrophic
failure of a strand occurs only when all bonds across the
strand break simultaneously.
At sufficiently high !, interparticle bonds rupture at a

higher rate than they reform, then the breaking of entire
strands occurs at approximately the same rate as the break-
ing of single bonds. We expect that catastrophic failure of
the network occurs very rapidly; this reduces to the behav-
ior predicted by the single-bond-rupture model leading to
the exponential dependence observed at high !. By con-
trast, in the limit of low !, the bond-breaking rate is
smaller than the bond-reforming rate; thus, the rupture of
a strand is much more unlikely and occurs only in the rare
event of simultaneous dissociation of all bonds in its cross
section. This also leads to an exponential dependence of "d
on ! but with a different characteristic stress. This ac-
counts for the two distinct regimes of delayed yield
observed experimentally (triangles in Fig. 2): a rapid,
catastrophic rupture of the structure at high stresses, and
a slow, stochastic erosion of the structure at low stresses.
This conceptual picture can be made quantitative by first

considering the microscopic scale of the bonds between
individual colloids. These can both rupture and heal by
thermal fluctuations at rates kD and kA, respectively. The
activated process of dissociation is enhanced by a force f
across the bond induced by a macroscopically applied
stress: the stress-dependent dissociation rate is k0D ¼
kD expðf#=kBTÞ [9], with # the range of the attraction. It
is this stress-enhanced bond rupture that explains delayed
failure in polymeric gels [7]. To understand the yielding
dynamics of colloidal gels, we must also consider struc-
tures at scales larger than individual particles.
For large applied stresses, the dissociation rate increases

substantially and becomes much greater than the associa-
tion rate: k0D $ kA. To calculate the dissociation rate of a
strand we assume that the average strand has a cross
section composed of n bonds. The survival probability of
a single bond is p1ðtÞ ¼ expð%k0DtÞ; consequently, the
probability that a strand is intact at a given time is pnðtÞ ¼
1% ½1% p1ðtÞ'n, where we assume that the force per bond
within a strand remains constant as individual bonds are
broken. When a strand becomes weaker, part of the load it
carries is redistributed to neighboring strands. To find
the average lifetime of a strand "D, we integrate over its
survival probability, yielding the strand dissociation rate

KD ¼ 1

"D
¼

!
%
Z 1

0
t0
dpn

dt
dt0

"%1
¼ k0D

Sn
( k0D

$þ lnn
; (1)

FIG. 2 (color online). Delay time "d between the application
of the shear stress ! and the moment of yield, for gels of strong
gel of carbon black at 8 wt% (triangles), depletion gel of
polystyrene colloids and dextran (% ¼ 0:3, cp ¼ 50 mg=ml
circles), and thermoreversible gel of pNIPAm-grafted colloids
at % ¼ 0:075 (squares). Drawn lines are exponential fits, accord-
ing to Eq. (3). Insets show magnifications of the data for weak
depletion and thermoreversible gels.

FIG. 1 (color online). (a) Creep response of carbon black gels
at 8 wt% for ! ¼ 50:0–15:0 Pa, decreasing from left to right
and (b) corresponding shear rate _&, arrows illustrate the
choice for "d as the maximum in d _&=dt. (c) Creep curves for
weak gel of polystyrene particles depleted with dextran (! ¼
0:6–0:01 Pa) and (d) for thermoreversible stearylated-silica gels
(! ¼ 12:0–6:3 Pa).

PRL 106, 248303 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
17 JUNE 2011

248303-2
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gel is a homogeneous material. These levels of structure are
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comprising 1.1 mm particles at a volume fraction f ¼ 0.12 in

formamide/sulfolane depleted by 50 mg ml"1, 500 kDa dextran16

(Fig. 1a). It has been previously shown that these hierarchical

structures strongly affect the moduli of gels,17 suggesting that

they may also be pivotal to other mechanical properties including

the delayed failure.

To describe the delayed yielding of these hierarchically struc-

tured materials, we model the system at multiple scales. A

particle-level model describes the stress-enhanced bond dissocia-

tion. A strand-level model considers the collective dissociation/

association dynamics of bonds at the neck of a gel strand and

yields the strand dissociation rate. A macroscopic model relates

the macroscopically applied stress to the strand dissociation rate

and predicts the degradation of the material before damage

localization and macroscopic failure.

2.1 Particle-level model

A colloidal particle of the formed gel is trapped in a potential well

resulting from interactions with its neighbors. Within this

potential well, irregular forces caused by thermal fluctuations of

the surrounding medium induce particle vibrations, which can

lead to the dissociation of a colloid–colloid bond. By considering

the diffusion equation for the density distribution of particles in

a colloid–colloid interaction potential, the dissociation rate of

bonds can be derived.18 When no external force is applied across

the bond, the dissociation rate becomes kD ¼ u0 exp("EA/kBT),

where u0 is the attempt frequency, EA is the depth of the

potential well, kB is the Boltzmann constant and T is the absolute

temperature. The frequency u0 depends on the diffusivity of the

particles and the shape and depth of the potential barrier.18

When a force f is applied across the weakly attractive bond, the

energy barrier is lowered19 and the dissociation rate is modified,

becoming20

k
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D ¼ kD exp
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kBT

"
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where d is the characteristic width of the interaction potential.

Here, the work performed by the applied force is approximated

by fd. This model for the kinetics of bond dissociation has been

experimentally verified for weakly attractive molecular systems.21

It should be mentioned that applying a force across the colloid–

colloid bond slightly modifies u0.
22 This effect is neglected in the

present model.

2.2 Strand-level model

If the cross-section of a strand includes several particles, many

dissociation events are required for a strand to break (Fig. 1b and

c). Due to thermal fluctuations, bonds also reform at an associ-

ation rate kA, which is assumed to be independent of the applied

stress. Since the thickness of a strand varies along its length, it is

assumed that fracture will occur at an existing ‘‘neck’’, the

weakest point along its contour, that has a cross-section of

n bonds. The integer number of intact bonds at the neck is

denoted by j ˛ [0,n].

During the rupture of a single strand, we assume that the

macroscopic stresses are constant; which is achieved experi-

mentally in so-called creep experiments. Even so, the force on the

breaking strand may not be constant. When some of the bonds

break at the neck of a straight strand, the tensile stiffness of the

strand is significantly reduced, simply because the strand stiffness

is the harmonic mean of the stiffness of its cross-sectional slices.

When a straight strand weakens, the force it carries is redis-

tributed to adjacent strands; as a result, the boundary conditions

of the breaking strand is best described as a constant deforma-

tion. For a non-straight strand loaded in tension, elastic bending

energy is distributed over the whole strand, not just its neck.

Consequently, bonds breaking at the neck do not significantly

change the apparent tensile stiffness of the strand; non-straight

strands are thus subjected to constant force boundary conditions

during fracture. Therefore, we explore two scenarios for strand

rupture events: constant strand force F, or constant strand

deformation, which corresponds to a constant bond force f.

We begin by examining the high stress limit, when k
0

D [ kA,

at constant deformation of the strand. In this case, association

events are rare and negligible. The probability that a single

bond is still intact at time t after the application of a static load is

p1(t) ¼ exp("k
0

Dt). Then, the probability that a strand with

a cross-section of n particles is still intact at time t becomes

Fig. 1 (a) Representative confocal microscope image of a colloidal gel of

volume fraction f¼ 0.12. Note the three levels of structure: particle-level,

strand-level and homogeneous macroscopic level. (b) Schematic illus-

tration of two simultaneously detached colloid–colloid bonds (striped

particles) at the neck of a strand. (c) Illustration of broken strand with

seven broken bonds.
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Yield precursors

Aime et al., PNAS 2018

What are these precursors?
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FIG. 1. (color online) Stress-strain curves as a result of saw-
tooth strain cycles shown in the inset (only first two sets are
shown) with �̇=10�2 s�1. From blue to yellow: �max = 0.005,
0.02, 0.035, 0.05, 0.065, 0.08, 0.095 (note that only a selection
of the sets is shown).

is reached, after which it levels off, indicating that the
material undergoes plastic flow at this stress level. For
every subsequent cycle, the observed stress is lower than
that in the first cycle, signalling a progressive, irreversible
weakening of the material. The stress-strain curve then
gradually approaches a limit cycle, with an enclosed area
that reflects the viscoelastic dissipation in the network
due to solvent flow or reversible particle rearrangements.
Note that the viscous contribution to the stress is neg-
ative in the unloading branch of the cycle, leading to a
negative overall stress as the strain returns to zero.
Because the timescale at which plastic rearrangements

take place can be relatively long for these strongly ag-
gregated particles, we expect the amount of plasticity to
depend on the loading rate. Indeed, when we increase �̇
by a factor of 10, to 10�1 s�1, we observe a much more
elastic response, with the onset of non-linear plastic be-
haviour shifted to much larger strains and stresses (Fig.
2a).
To analyze the nature of the observed plasticity in col-

loidal gels in more detail, we first disentangle the elastic
and viscous contributions to the mechanical response, by
averaging the loading and unloading curve for each cy-
cle [26]. This averages out the viscous contribution to
the stress, so that only the elastic stress �el remains (Fig.
2b). For the smallest strain amplitude, the stress-strain
response is linear; however, at higher strains, when the
gels have undergone plastic deformation, the curves be-
come strongly non-linear. The shapes of the non-linear
response of all cycles are very similar. After an initial
linear response, characterized by a linear modulus G0,
the gels show pronounced strain hardening: at a char-

FIG. 2. (color online) a) Stress-strain curves for �̇=10�1 s�1,
from blue to yellow: �max = 0.005, 0.02, 0.035, 0.05, 0.065,
0.08, 0.095. b) Elastic midlines for curves in Fig.1. c) The
initial modulus as function of �max for �̇=10�1 s�1 (squares)
and �̇=10�2 s�1 (circles). The inset shows the same data on a
double-logarithmic scale. d) Collapse of every second elastic
midline for both strain rates. The inset shows the depen-
dence of �⇤ on �max for �̇=10�1 s�1 (squares) and �̇=10�2

s�1 (circles).

acteristic strain amplitude �⇤, there is a sharp upturn
of the stress. The linear modulus that characterizes the
initial slope of the stress-strain curves decreases with in-
creasing strain amplitude (Fig. 2c), signaling the pro-
gressive weakening of the gels resulting from the gradual
erosion of the network structure during the fatigue cycles.
We obtain �⇤ by superimposing the different stress-strain
curves for both strain rates by plotting the normalized
stress, �el/�⇤, where �⇤ = G0�⇤, as a function of the
rescaled strain �/�⇤ (Fig. 2d, SI Fig. 11). The excellent
collapse indicates that the physical mechanism that un-
derlies the mechanical response of the gels remains the
same during the fatigue cycles. We find a linear increase
of �⇤ with increasing maximum strain amplitude (inset
Fig. 2c), indicating that the strain hardening response is
delayed by the fatigue process.
While our data demonstrate the importance of plasticity
for fatigue in colloidal gels, the microscopic nature of this
plastic deformation remains to be uncovered. Given that
colloidal gels are networks of connected strands consist-
ing of aggregated particles, the observed weakening must
be caused either by the rupture of gel strands, leading to
a decrease in network connectivity, or by softening of the
gel strands, leading to a lower effective spring constant
of the strands. To identify which of these scenarios is
the dominant one, we need detailed information at the
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single strand level. Since this is extremely difficult to ob-
tain experimentally for our system, we perform Brown-
ian Dynamics computer simulations on single gel strands
(Fig. 3). The strands are composed of 256 particles of
diameter a interacting through a Morse potential [27],
with an interaction strength ✏ = 10 kBT and interac-
tion range parameter ⇢0 = 33, which corresponds to a
well width of approximately � = 0.09 a, similar to the
experimental system (SI, Fig. 1). Following the experi-
mental protocol, the gel strands are deformed cyclically
with a saw-tooth strain profile (see supplemental mate-
rial for further details about the simulation method). To
connect our simulation results to the experimental find-
ings, we calculate the force needed to deform the strand
as a function of the strain [28]. The force-strain curves
for non-fractured gel strands show features that are very
similar to the macroscopic curves measured experimen-
tally (Fig. 4a). Like in the experimental curves, we find
that the first force-strain curve for each strain amplitude
differs qualitatively from the subsequent cycles, showing
a plateau above a critical force that indicates plastic de-
formation within the gel strand.
We use a similar procedure to rescale the force-strain
curves as in Fig. 2d. Again, we average the force in the
loading and unloading curve and plot the rescaled elastic
force fel/f⇤, with f⇤ = k�⇤ the scaled stiffness of the
strand in the linear regime as a function of the rescaled
strain �/�⇤. This yields a curve that shows similar fea-
tures to the experimental one (Fig. 4b), with a linear
response regime, followed by a strain-hardening response
at higher strains. The linear spring constant of the gel
strands k decreases in a similar fashion with the strain
amplitude �max as the elastic modulus in the experiments
(Fig. 4c). Furthermore, the onset of strain hardening
shifts to higher strains with increasing strain amplitude
(Fig. 4d), also in agreement with experiments (inset Fig.
2c). Since broken strands have been excluded from the
analysis, the observed weakening in the simulated force-
strain curves can be attributed completely to plastic re-
arrangements within the strands. This suggests that also
the weakening observed at the macroscopic scale in our
fatigue experiments can be explained by plastic deforma-
tion and softening in individual gel strands, without the
need to invoke rupture of strands.
To verify that this finding is not specific to the geometry
of the simulated gel strands, we have carried out simu-
lations for strands of different length and width and for
larger gel networks consisting of many interconnected gel
strands. In all cases, the force-strain loops show similar
features to the curves in Fig. 4a (SI, Fig. 7-9), which
affirms that gel strand plasticity is a mechanism for fa-
tigue in a wide class of colloidal gels, irrespective of the
precise structure of the gel strands.

To unravel the microscopic mechanism that underlies
the plastic deformation of the gel strands, we analyze the
rearrangements of individual particles and quantify the

FIG. 3. (color online) (a) Visual representation of the non-
cumulative average plastic deformation per particle in oscilla-
tion cycles 1,2,4,6,10 and 14 of a single gel strand (�max =
0.04, data SI Fig 2.). The color bar indicates the non-
cumulative plastic deformation mi per particle in each cycle
from low (purple) to high (yellow). The cumulative plastic
deformation of this gel strand is shown in SI Fig. 10. (b)
Plastic deformation in a gel strand after the first cycle (F1),
before fracture (F11) and after fracture (F12).

FIG. 4. (color online) (a) Force-strain curves for BD simula-
tions of 24 (8x3) oscillations of a single gel strand at strain
amplitudes (purple to orange) �max = 0.02, 0.04 and 0.06.
(b) Collapse of the average force-strain curves (positive parts
of the loading and unloading curve) of the 4th oscillation cy-
cle scaled by �⇤ on the x-axis and k · �⇤ on the y-axis. Data
is obtained from SI Fig. 2. (c) Spring constant k (in units
kBTa

�1) as a function of �max. (d) �⇤ as a function of �max.

average plastic strain for each particle in an oscillation
cn as
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where rij(0) and rij(t) denote the separation vector be-
tween particle i and neighbouring particles j at the start
of the cycle and after a time t, respectively, Ni is the
number of nearest neighbours of particle i, and where
the average is taken over the entire oscillation.
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Plastic rearrangemnets precede yielding
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Syneresis
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Syneresis in low fat mayonnaise

24

Spontaneous syneresis of a model colloidal gel

Wu et al., PRL, 2020

Density matched, coated 
with thermoresponsive
surfactant
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Coarsening (Zia et al 2014)

Container wall coated with 
polyelectrolyte multilayer
(weaken adhesion)

Syneresis is driven by internal stresses
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Wu et al., PRL, 2020

Compaction dynamics
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(Harich et al. 2016)

Collapse under gravity

Poro-elastic process: stress is balanced by Darcy pressure 
and network elasticity

From Manley et al. PRL 2005:

permeablity of the gel

𝑑! ≈ 1.9: fractal dimension
𝐺~𝜙"

Assume compression modulus  𝐸~𝐺~𝜙"

𝜏~𝜙#$.$
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Droplet versus particle gels 

Hard solid Soft solid Liquid

Solid Liquid

Same interparticle potential!

Wu et al., PRL, 2020
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Final extent of syneresis

solid

liquid

rubber

Repeated cooling-heating cycles

Wu et al., PRL, 2020

solid

liquid
rubber
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Relation to different modes of  supporting stress

solid

liquid

rubber𝐺~𝜙&

Sahimi et al., PRB, 1998
Oliveira Reis JCIS 2018

Strand bending:
𝑣 ≈ 3.2 − 3.8

Strand stretching:
𝑣 ≈ 1.6 − 2.1

Solid surfaces give 
bending resistance

Slippery surfaces give 
no bending resistance
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solid

liquid
rubber

Relation to different modes of  supporting stress

Assume compresive pressure  𝑃~𝐵'𝜙' (𝐵' < 0)

Leads to compression ∆𝑉/𝑉( ≈ −𝑃/𝐸

With bulk modulus 𝐸~𝐺

Solid: 𝐺~𝜙".' → ∆𝑉/𝑉(~ 𝜙#$.'

Liquid: 𝐺~𝜙' → ∆𝑉/𝑉(~ 𝜙(
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Microscopic picture

Solid Liquid
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Laser speckle imaging of syneresis
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Laser speckle imaging of syneresis

Solid Liquid
Homogenous contraction Dynamic ‘band’
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Laser speckle imaging of syneresis
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Ongoing work

Can we identify which bonds are breaking / forming and how this affects network topology?

How does the topology relate to stress distributions? 

Colombo,Degado et al.
PRL (2014)
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Ongoing work: network topology

Reduction alogorithm to obtain 
network topology

Changes in toplogy, strand 
thickness, length, number, etc 

(Joanne Verweij, Berend van der Meer)

Capillary gels using ATPS
(Leonardo Ruiz-Martinez)
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Ongoing work: rough particles

Berend van der Meer with Roel Dullens (Nijmegen)
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Conclusions

• Colloidal gels are marginally stable soft solids
• Yielding (solid-to-fluid transition) is preceded by large plastic 

rearrangements that soften the gel
• Internal stresses can lead to collapse, called syneresis
• The particle surface matters: solid particles give more stable gels 

than rubbery particles or liquid droplets
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