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Macroscopic Problem: Find

Constitutive Model

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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Microscopic Problem: Find

Neo-Hookean material

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]

loading: macroscopic deformation gradient

parameters: material & geometry
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Scale Coupling

Hill-Mandel Condition

Effective Quantities

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]

(KBC)

(PBC)



Problem Statement

- Full two-scale simulations → too expensive
(multi-query contexts: optimization, materials design, etc.)

- Non-intrusive and accurate approximation of the microscopic stress 
field for different parameters

- Obtain rapidly effective stress → reducing to a single-scale problem
-

- Accurate effective stiffness and sensitivities
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Methodology

Approximate displacement field
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Intrusive RB Method

with RB basis functions

Reduced problem

Need hyperreduction!

[Yvonnet, J. and He, Q.C., 2007, JCP 223]
[Radermacher, A., et al., 2016, AMSES 3(1)]
[Hernández, J. A., et al., 2014, CMAME 276]
[Soldner, Dominic, et al., 2017, Comput. Mech. 60(4)]

• Hyperreduction
(convergence problems)

• Intrusive
(requires access to the 
microscopic solver)
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Non-Intrusive RB Method

Instead of solving reduced 
system, perform a regression to 
obtain 

For a new pair             , the 
coefficients  can be directly 
obtained

[Guo, M. and Hesthaven, J.S., 2018, CMAME 341]
[Kast, M., Guo, M. and Hesthaven, J.S., 2020, CMAME 364]
[Swischuk, Renee, et al., 2019, Comput Fluids 179]

Approximate displacement field

with RB basis functions
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To obtain stresses, gradient of     is 
needed, and evaluation of the 
constitutive model
- Intrusive: Need to implement material model
- Slow: Need to evaluate material model         times

Idea: Approximate stress field directly!

Non-Intrusive RB Method [Guo, M. and Hesthaven, J.S., 2018, CMAME 341]
[Kast, M., Guo, M. and Hesthaven, J.S., 2020, CMAME 364]
[Swischuk, Renee, et al., 2019, Comput Fluids 179]

Approximate displacement field

with RB basis functions



Methodology

1. Collect stress snapshots
2. Compute correlation matrix

3. Compute the eigenvalues      and eigenvectors      of
4. Compute the basis functions
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Proper Orthogonal Decomposition (POD)

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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Methodology
Effective Quantities

Sensitivities

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]

11

Construct                                                              with Gaussian Process Regression!

can be computed offline!
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Gaussian Process Regression (GPR)

Given some data                            , we want to find a scalar regression function which is 
distributed as a Gaussian Process with zero mean function and kernel 

[Guo, M. and Hesthaven, J.S., 2018, CMAME 341]
[Rasmussen, C.E., 2003, Summer school on machine learning]

Automatic relevance determination (ARD) squared exponential kernel
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Gaussian Process Regression (GPR)

where

Given some data                            , we want to find a scalar regression function which is 
distributed as a Gaussian Process with zero mean function and kernel 

[Guo, M. and Hesthaven, J.S., 2018, CMAME 341]
[Rasmussen, C.E., 2003, Summer school on machine learning]
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Fiber reinforced microstructure

- 4321 eight-node elements with 4 quadrature points
- Volume fraction of fiber is 12.56%
- Matrix material
- Fiber material
- Deformations
- 500 training snapshots (Sobol sequence)
- 1000 testing snapshots (uniformly random)
- P-PODGPR Error

- Projection Error

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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With

POD for different numbers of training snapshots

Fiber reinforced microstructure

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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Fiber reinforced microstructure

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]

Mean error Max error

Test error in effective stress for 200 training snapshots 
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Fiber reinforced microstructure

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]

Mean error Max error

Test error in effective stress for 500 training snapshots 
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P-PODGPR outperforms all neural networks, while also being 
able to recover the microscopic stress field

- Comparison with a neural network (Multilayer Perceptron) that is trained with 
pairs of                                with                   training snapshots

- Trained with Adam optimizer with learning rate of          , batch size of      and 
Mean Squared Error Loss function for different architectures

- ELU activation function was applied after every layer apart from last layer

Fiber reinforced microstructure

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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Two-scale Cook’s membrane problem

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]



Numerical Examples

- 200 four-node elements with 4 
quadrature points

- Vertical traction of       on right edge
- Left edge is fixed
- Matrix material
- Fiber material
- Surrogate model trained with 200 

snapshots
- Relative error to compare microscopic 

stresses
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Two-scale Cook’s membrane problem

: Averaged absolute stress

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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Numerical Examples
Two-scale Cook’s membrane problem

Macroscopic stress component 

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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Numerical Examples
Two-scale Cook’s membrane problem

Microscopic stress component         at point A

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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Numerical Examples
Two-scale Cook’s membrane problem

Microscopic stress component         at point B

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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Numerical Examples
Two-scale Cook’s membrane problem

Online speedup of the order of   

[Guo, T., Rokoš, O., and Veroy, K., 2021, CMAME 384]
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Summary

• Novel method based on non-intrusive 
reduced basis method

• Validated on 2D composite 
microstructure and multiscale 
application

• High accuracy and online speedup
• Sensitivities are available and can be 

used for optimization

Outlook

• Geometrical parameters 

• Dissipative constitutive models 
(Plasticity, Damage)

• Test on 3D problems

Contact: Ondřej Rokoš (o.rokos@tue.nl)
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