

Coalescence propagation in concentrated emulsions flowing through constrictions

Emma Hinderink 4TU - Soft Matter day e.Hinderink@tudelft.nl

Recorded: 1000 fps Playback: 5 fps

- Dynamic interfacial tension
- Dynamic interfacial stabilisation

Emulsion stability - coalescence

 $\checkmark~$ Dilute emulsions in homogenous flows

TUDelft

• Concentrated emulsions in heterogeneous flows

Droplet stability

Krebs et al., Soft matter (2012)

Gunes et al., Soft matter (2013)

Bremond et al., Phys. Rev. Let (2011)

Emulsion stability - coalescence

Coalescence starts at the exit of the channel \rightarrow Acceleration of droplets

Bremond et al., Phys. Rev. Let (2011) Raj et al., Soft Matter (2016), The European Physical Journal (2022)

Goals

Predict and control the features of concentrated emulsions after downstream processing

- 1. How do local events (e.g., coalescence) influence the global structure of the emulsions?
- 2. What is the effect of **flow conditions**, channel geometries and fluid properties on emulsions properties.

Reference chip

Constriction chip

Continuous phase = 0.05wt.% Picosurf in HFE7500 Dispersed phase = demineralised water

f_{coal} at the end of the channels

 $N_{coal} = rac{V_{initial}}{V_{coal}}$ - 1

 $f_{coal} = \frac{N_{coal}}{t}$

TUDelft

Metastable emulsion

- Stable in reference chip
- Coalescence induced by constriction
- Independent of location

What happens at the constriction?

Coalescence avalanche

Metastable emulsion

Recorded: 1000 fps Playback: 5 fps Dispersed phase

- Droplet rearrangements
- Droplet coalesce/break up

Continuous phase

- Flow profile
- Film drainage

flow

Coalescence avalanches

- 1. <u>Contraction</u> of leading droplet due to interfacial tension effects
- 2. Pressure drop in film between trailing and leading drop
- Acceleration of trailing drop
- ➤ Deformation of trailing drop → dilution of surfactants at interface?

Particle Image Velocimetry (PIV)

Track particles in three dimensions \rightarrow Resolve x, y and z direction

Source: PIV Poster, lavision.de

Height of channel = 55 μ m \rightarrow All particles are in the working distance

x [mm]

3D Particle Tracking Velocimetry (3D-PTV)

Shake the box

٠

•

3D Particle tracking velocimetry (3D-PTV)

Shake the box

0.0155

V (m/s)

Conclusion w/o emulsions

- 1. Acceleration of leading droplet
- 2. Pressure drop between trailing and leading drop
- 3. Acceleration & deformation of trailing drop
- 4. Relaxation of coalesced droplet \rightarrow propagation

Internal flow coalesced droplet > initial flow

TUDelft

Generalize insights

→ Effect of fluid & surfactant properties on coalescence avalanche?

Thank you! Questions?

Acknowledgements:

Volkert van Steijn, Bijoy Bera, Christiaan Schinkel

ISPT Project: Controlling Multiphase Flow (680-91-012), NWO & TKI-E&I

Emma Hinderink e.hinderink@tudelft.nl

