Complex Colloidal Self-Assembly: Towards Designer Materials

19 JAN 2023 – SOFT MATTER & SELF-ASSEMBLY WORKSHOP 4TU.HTM

Janne-Mieke Meijer, Colloidal Soft Matter

Soft Matter and Biological Physics, Department of Applied Physics and Science Education

Spontaneous Self-Organization

- In nature: spontaneous organization of building blocks occurs
- Clear relationship macroscopic structure and microscopic building blocks

Bottom-up Assembly of Functional Materials

- Many novel building blocks: molecules, nanoparticles, colloids
- Employ spontaneous organization to make new materials

Colloids

- Size: 1-1000 nm
- "Soft, Slow & Seeable"

Glas

Functional Materials of Colloidal Building Blocks

Spontaneous Assembly

Photonic Crystals & Glasses

Image: space of the space of

Biomimicry

Cubes: a new frontier!

Advances in synthesis: cubic shaped (nano)particles have become available.

Rossi et al. (2011) Soft Matter

Zhang et al. (2011) PRL

Zhou *et al.* (2011) PNAS

Self-Assembled Nanomaterials of Cubes

Superball Self-Assembly - Shape Driven

Confocal Microscopy

SINGLE PARTICLE

- ✓ Spatial resolution
- ✓ Dynamics
- ✓ Interactions
- ✓ Self-assembly

Low concentration (full duration: 6 hours)

High concentration (4.3x real time)

Dense Rhombic Crystals

Small Angle X-ray Scattering

LOCAL & BULK

- Microscopic \checkmark
- Macroscopic \checkmark
- **Better statistics** \checkmark

e

Hollow-site

9

Solid-Solid Phase Transitions Induced by Shape

Jiao *et al.* Phys Rev E 2009, Batten *et al.* Phys Rev E 2010, Ni *et al.* Soft Matter 2012

Driving Assembly with Solvent Evaporation

Convective Assembly

D = 774 ± 35 nm

 Λ_0 –lattice

 Λ_1 –lattice

J.M. Meijer et al, Langmuir (2012)

Different Structures in Dense Monolayer Structures

D = 774 ± 35 nm

D = 1028 ± 35 nm

D = 1266 ± 27 nm

Single-Particle Characterization of Lattices

Characterization of Lattices for different m

Different corner roundness

Lattice Frequency

J.M. Meijer et al. Langmuir (2019)

Superstructures of Attractive Superballs

Rossi et al. (2011) Soft Matter

 $q = 2R_g / L$

Rossi et al. (2015) Soft Matter

In-situ Control over Attractions

Critical Casimir force

Nguyen et al Nat Comm 2016

TU/e

Stuij, PhD Thesis, UvA, 2020

Cubes + Critical Casimir force

Anisotropic interactions

μm 10 Potential (k_bT) ΔT=0.14K ΔT=0.02K -10

In-situ control of self-assembly process

Formation of Different Superstructures

Square

Hexagonal

Lattice Analysis at Different Attraction Strength

Square

Hexagonal

Shape Controlled Switching Structures

0.2

Δ*T* (°C)

0.4

0.0

1.00

0.00

Summary: Shape, Interactions & Pathway Matters

Cubic particles

Hard body interactions

Long-range Attractions and Shear

Short-range Attractions

Acknowledgements

Van 't Hoff Laboratory **Utrecht University**

- Antara Pal ٠
- Samia Ouhajji
- **Fabian Hagemans** .
- Vera Meester ٠
- Andrei Petukhov ٠
- Albert Philipse ٠
- Henk Lekkerkerker ٠
- Laura Rossi .
- **Dmytro Byelov** ٠
- Jan Hilhorst ٠
- Anke Leferink op Reinink ٠
- Joost Wolters .
- Jos van Rijssel •

Hasylab, DESY

- Ivan Vartanyants
- Anatoly Shabalin
- Alexey Zozulya
- Sergey Lazarev

HHU Dusseldorf

- Astrid Rauh •
- Marco Hildebrandt
- Matthias Karg

SWING, SOLEIL

Javier Perez

Jan Maarten van Doorn

Joris Sprakel

ID06 & DUBBLE

ESRF, Grenoble

Soft Matter, IoP,

Peter Schall

Physics, TU/e

Piet Swinkels

Daphne Sayasilpi

Steffen Lootsma

Chris Kennedy

Kees Storm

Tine Stevens

Max Schelling

Ties van de Laar

Anatoly Snigirev

Guiseppe Portale

Daniel Hermida Merino

University of Amsterdam

Soft Matter and Biological

Irina Snigireva

٠

•

٠

٠

•

•

٠

DÈŚY

Funding:

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

SFB 1214

23

Thank you!

Colloid Group @ TU/e

Dr. Janne-Mieke Meijer

Soft Matter and Biological Physics Eindhoven University of Technology

> j.m.meijer@tue.nl www.janne-miekemeijer.com