Vacuum-Deposited Halide Perovskites And Broadband Transparent Conducting Oxides For Photovoltaics

M3 Optoelectronic Materials Group @ IMS

<table>
<thead>
<tr>
<th>Pierre-Alexis Repecaud</th>
<th>Yury Smirnov</th>
<th>Nathan Rodkey</th>
<th>Tatiana Soto-Montero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dominic Post</td>
<td>Adem Mirza</td>
<td>Yorick Birkholzer</td>
<td>Wiria Soltanpoor</td>
</tr>
<tr>
<td>Monica Morales-Masis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dr. Monica Morales-Masis
Associate Professor
M3 Optoelectronic Materials Group @ IMS

4TU Meeting Materials—December 2020
Optoelectronic Thin Film Materials

- Inorganic and Hybrid Halide Perovskites
- Transparent Conducting Materials (n- and p-type)
- Synthesize and fabricate
- Characterize and improve
- Understand and design
- Apply and enable functionalities in devices

Materials

- Physical & chemical deposition techniques
- Solar cells
- Photonics
- Light emitting devices
- Structural and defect analysis
- Material modeling

Structural, electrical, optical property relations

Solar cell image

Material: CH$_3$NH$_3$PbI$_3$

Applications:
- Solar cells
- Light emitting devices

Reviews:
- Soto-Montero T., Soltanpoor W., M.M. Invited APL Mat (under review)
Pulsed Laser Deposition (PLD)

Known for playing LEGO on atomic scale with complex oxides …

Prof. Mark Huijben
Prof. Gertjan Koster
Prof. Guus Rijnders
Prof. Dave Blank

IMS seminal work on superlattices, in-situ monitoring, PZT and more
Pulsed Laser Deposition (PLD)

Known for playing LEGO on atomic scale with complex oxides …

PLD properties

<table>
<thead>
<tr>
<th>PLD properties</th>
<th>Interesting for ..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near stoichiometric transfer of multi-compounds.</td>
<td>Halide Perovskites ABX₃, X = I, Br, Cl</td>
</tr>
<tr>
<td>Volatility insensitive.</td>
<td></td>
</tr>
<tr>
<td>Low-damage deposition of thin films on sensitive substrates.</td>
<td>Transparent Conducting Oxides (TCOs)</td>
</tr>
</tbody>
</table>

But absolute requirement for PV …

Scalability (deposition on wafer-size substrates)

Complex optoelectronic materials for solar cells with PLD?

Prof. Mark Huijben
Prof. Gertjan Koster
Prof. Guus Rijnders
Prof. Dave Blank

IMS seminal work on superlattices, in-situ monitoring, PZT and more

IMS Lab
Scalable (wafer-based) Pulsed Laser Deposition

4 inch wafers

Scalable Pulsed Laser Deposition for TCOs in Solar Cells
Smirnov, Kuik, Schmengler, Repecaud, ... Morales-Masis M.
Adv. Mat. Technologies, 2020

4 – 12 inch wafers

TCOs for passivated contacts
Featured in PV Magazine
Pulsed Laser Deposition (PLD)

Known for playing LEGO on atomic scale with complex oxides …

PLD properties
- Near stoichiometric transfer of multi-compounds.
- Volatility insensitive.
- Low-damage deposition of thin films on sensitive substrates.

Interesting for..
- Halide Perovskites ABX_3, $X = I, Br, Cl$
- Transparent Conducting Oxides (TCOs)
- But absolute requirement for PV …
- Scalability (deposition on wafer-size substrates)

Complex optoelectronic materials for solar cells with PLD?

Prof. Mark Huijben
Prof. Gertjan Koster
Prof. Guus Rijnders
Prof. Dave Blank

IMS seminal work on superlattices, in-situ monitoring, PZT and more
PLD for halide perovskite growth?

Hybrid and Inorganic Halide Perovskites

- Record solar cell efficiencies
- High and tunable luminescence
- Defect tolerance
- Simple fabrication

But
- Unstable (thermal, environmental)
- Pb-based
- Lack of controlled growth

ABX_3

CH_3NH_3, Pb, I
CH_5N_2, Sn, Br
Cs, Bi, Cl
PLD for halide perovskite growth?

<table>
<thead>
<tr>
<th>Hybrid and Inorganic Halide Perovskites</th>
<th>Current deposition methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABX₃</td>
<td>Solution Process</td>
</tr>
<tr>
<td></td>
<td>Solubility dependent</td>
</tr>
<tr>
<td></td>
<td>Pbl₃ + DMF</td>
</tr>
<tr>
<td></td>
<td>MAI + DMF</td>
</tr>
<tr>
<td></td>
<td>MAPbl₃</td>
</tr>
<tr>
<td>CH₃NH₃ Pb I</td>
<td>Thermal Co-Evaporation</td>
</tr>
<tr>
<td>CH₃N₂ Sn Br</td>
<td>Volatility dependent</td>
</tr>
<tr>
<td>Cs Bi Cl</td>
<td>MAI Csl Pbl₂ PbBr₂</td>
</tr>
</tbody>
</table>

- Record solar cell efficiencies
- High and tunable luminescence
- Defect tolerance
- Simple fabrication

But

- Unstable (thermal, environmental)
- Pb-based
- Lack of controlled growth
PLD for halide perovskite growth?

New Laser-Based Methods

- Single-source
- Dual-laser deposition

Current deposition methods

- **Solution Process**
 - Solubility dependent
 - \(\text{PbI}_3 + \text{DMF} \)
 - \(\text{MAI} + \text{DMF} \)
 - \(\text{MAPbI}_3 \)

- **Thermal Co-Evaporation**
 - Volatility dependent
 - \(\text{MAI} \)
 - \(\text{CsI} \)
 - \(\text{PbI}_2 \)
 - \(\text{PbBr}_2 \)
Pressing challenges of halide perovskite thin film growth

Tatiana Soto-Montoro, Wina Soltanpour, and Monica Morales-Maxia

Single Source PLD of Inorganic Halide Perovskites

Challenging material:
- Oxidation of Sn ($Sn^{2+} - 2e^- \rightarrow Sn^{4+}$)
- Two independent stable polymorphs at RT:
 - Optically active black-phase (orthorhombic B-γ)
 - Non-optically active yellow-phase
Single Source Halide PLD Target Fabrication

Single Source PLD of Inorganic Halide Perovskites

Vacuum

Deposition under inert Ar atmosphere

Substrate at RT:
Si/native SiOx
Fused silica
Glass

Al$_2$O$_3$ capping layer

Confirmation of Black-γ-phase CsSnI$_3$ films

Confirmation of Black-$$\gamma$$-phase CsSnI$_3$ films

PLD CsSnI$_3$: high absorption coefficient and optimum band gap for PV

Band Gap of 1.32 eV

Sharp Absorption Edge
High quality film quantified by Urbach energy (E_U)

$$\alpha \propto \exp(-h\nu/E_U)$$

E_U - CsSnI$_3$: 12.9 meV
E_U - MAPbI$_3$: 12.5 meV

PLD CsSnI$_3$: Higher absorption coefficient than c-Si

Band Gap of 1.32 eV

Sharp Absorption Edge

High quality film quantified by Urbach energy (E_U)

$$\alpha \propto \exp(-h\nu/E_U)$$

E_U - CsSnI$_3$: 12.9 meV

E_U – MAPbI$_3$: 12.5 meV

PLD CsSnI$_3$: NIR Photoluminescence

Band Gap of 1.32 eV

Sharp Absorption Edge
High quality film quantified by Urbach energy (E_U)

$$\alpha \propto \exp(-\frac{\hbar v}{E_U})$$

- E_U - CsSnI$_3$: 12.9 meV
- E_U – MAPbI$_3$: 12.5 meV

Direct Band Gap
High PL

Other halide perovskite compositions?

$\text{Cs}_2\text{AgBiBr}_6$

CsBr + AgBr + Bi(III)Br -> CsAgBiBr$_6$

Mechanochemical synthesis

Nathan Rodkey, Stan Kaal, et al unpublished results
Solar Cells?

Collaboration with solar cell groups:
Pulsed Laser Deposition (PLD)

Known for playing LEGO on atomic scale with complex oxides …

<table>
<thead>
<tr>
<th>PLD properties</th>
<th>Interesting for ..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near stoichiometric transfer of multi-compounds.</td>
<td>Halide Perovskites ABX$_3$, X = I, Br, Cl</td>
</tr>
<tr>
<td>Volatility insensitive.</td>
<td>Transparent Conducting Oxides (TCOs)</td>
</tr>
<tr>
<td>Low-damage deposition of thin films on sensitive substrates.</td>
<td>But absolute requirement for PV ...</td>
</tr>
<tr>
<td></td>
<td>Scalability (deposition on wafer-size substrates)</td>
</tr>
</tbody>
</table>

Complex optoelectronic materials for solar cells with PLD?

Prof. Mark Huijben
Prof. Gertjan Koster
Prof. Guus Rijnders
Prof. Dave Blank

IMS seminal work on superlattices, in-situ monitoring, PZT and more
Scalable PLD of Transparent Conducting Oxides for Solar Cells

Zr-doped In$_2$O$_3$ (IZrO) as Vis-NIR transparent and conductive material

σ = 1500 Ω$^{-1}$cm$^{-1}$ (amorphous)
σ = 4200 Ω$^{-1}$cm$^{-1}$ (polycrystalline)

M. Morales-Masis, et al. IEEE JPV, Vol.8, 2018
PLD of IZrO as Rear Electrode for Semitransparent Perovskite Solar Cells

Wafer scale PLD of IZrO:
- 4 substrates (30 x 30 mm) with 4 cells (0.09 cm2) per deposition;
- RT deposition (50 Ohm/sq)

PLD of IZrO as Rear Electrode for Semitransparent Perovskite Solar Cells

Cells with PLD IZrO:
- No S-shape IV (R_{sh} of ITO and IZrO \sim 50 Ohm/sq)
- Improved FF and V_{oc} compared to sputtered ITO

PLD of IZrO as Rear Electrode for Semitransparent Perovskite Solar Cells

Cells with PLD IZrO:
- No S-shape IV (R_{sh} of ITO and IZrO ~ 50 Ohm/sq)
- Improved FF and V_{oc} compared to sputtered ITO

PLD of IZrO as Rear Electrode for Semitransparent Perovskite Solar Cells

Cells with PLD IZrO:
- Cu baseline = 20% (high quality absorber)
- Improved FF and V_{oc} compared to sputtered ITO

Outlook

Tandems: potential for >30% efficiency

Hybrid perovskite top cell
Excellent blue-Vis response
Low subgap absorption

SHJ solar cell
Excellent red response
Excellent surface passivation (V_{oc} up to 750 mV)

Planned development (PLD)

1. Monolithic integration of halide perovskites on textured silicon bottom cells
2. Soft deposition of the contacts on top of sensitive device layers.
3. Exploration of new stable and Pb-free perovskite compositions
Thank you

Team members, IMS group, NEM cluster and MESA+

Collaborators

Funding