Enriched finite element modelling of interface problems

Alejandro M. Aragón

Department of Precision and Microsystems Engineering Faculty of Mechanical, Maritime and Materials Engineering

Enriched finite element methods allow us to decouple geometry from discretization

Enriched finite element methods allow us to decouple geometry from discretization

Enriched finite element methods allow us to decouple geometry from discretization

• Soghrati et al., An interface-enriched generalized FEM for problems with discontinuous gradient fields. Int J Numer Meth Eng, 89 (2012)

Decoupling mesh from geometry makes it easy to obtain statistically significant results

10% volume of elastic spherical inclusions
 (110 total each with 50 µm in diameter)

Decoupling mesh from geometry makes it easy to obtain statistically significant results

• 10% volume of elastic spherical inclusions (110 total each with 50 µm in diameter)

The formulation was used to obtain failure envelopes

The formulation was used to obtain failure envelopes

• Macroscopic displacement jump:

$$[u_1(\tau)] = 0.4 \tau \cos(\alpha),$$

$$[u_3(\tau)] = 0.2 \tau \sin(\alpha).$$

The effect of in-plane deformation is captured in the failure response

• Aragón et al., Effect of in-plane deformation on the cohesive failure of heterogeneous adhesives. J Mech Phys Solids, 61 (2013)

Enriched FEM can accurately capture the stress response of an intervertebral disc

- Human intervertebral disc (IVD):
 - 200×100 structured mesh;
 - Condition number 7.82×10^9 to 3.45×10^3 (same as standard FEM).

• Aragón et al., On the stability and interpolating properties of the Hierarchical Interfaceenriched Finite Element Method. Comput Methods Appl Mech Eng, 362 (2020)

The interface-enriched formulation is stable with respect to condition number

- Damage in complex microstructure:
 - 2.5 million degrees of freedom;
 - Condition number 5.6×10^{11} to 6.1×10^{4} (same as standard FEM).

• Aragón et al., On the stability and interpolating properties of the Hierarchical Interfaceenriched Finite Element Method. Comput Methods Appl Mech Eng, 362 (2020)

The formulation was used to simulate active cooling in an aluminum plate

- Plates of $50 \times 50 \times 2$ (mm³):
 - Maximum (theoretical) temperature of 5,700 ℃;
 - Cooling a flow rate of 10 ml/min (top) or 40 ml/min (bottom):

• Aragón et al., On the stability and interpolating properties of the Hierarchical Interfaceenriched Finite Element Method. Comput Methods Appl Mech Eng, 362 (2020)

The enriched formulation also works for contact and non-conforming mesh coupling

• Liu et al., An interface-enriched generalized finite element formulation for locking-free coupling of non-conforming discretizations and contact, Comput Methods Appl Mech Eng, In Preparation.

The interface-enriched formulation was also generalized to treat strong discontinuities

• Discontinuity-Enriched Finite Element Method (DE-FEM):

$$oldsymbol{u}^h\left(oldsymbol{x}
ight) = \underbrace{\sum_{i \in \iota_h}^n N_i(oldsymbol{x}) oldsymbol{U}_i}_{ ext{standard FEM}} + \underbrace{\sum_{i \in \iota_w}^{ ext{weak}} \psi_i(oldsymbol{x}) oldsymbol{lpha}_i}_{ ext{enriched or generalized}}^{ ext{strong}}$$

• Aragón and Simone, The Discontinuity-Enriched Finite Element Method. Int J Numer Meth Eng, 112 (2017)

Discontinuity-Enriched FEMAragón and Simone, *IJNME* (2017)

Immersed boundariesSanne van den Boom

fracture mechanicsJian Zhang

complex microstructuresDongyu Liu

Enriched FEM was developed for immersed boundary (fictitious domain) problems

• van den Boom et al., and Simone, A stable interface-enriched formulation for immersed domains with strong enforcement of essential boundary conditions. Int J Numer Meth Eng, 120 (2019)

Can we use enriched FEM for more than just analysis?

Autonomous virtual prototyping

The Problem

The Challenges

My Approach

Enriched topology optimization Sanne van den Boom

• van den Boom *et al.*, An Interface-enriched Generalized Finite Element Method for Levelset-based Topology Optimization. *Struct Multidiscipl Optim*, In Press.

We use enriched topology optimization to analyze and design phononic crystals

We use enriched topology optimization to analyze and design phononic crystals

We have used enriched topology optimization for fracture anisotropy in 3D-printed chocolate

Minimize/maximize energy release rate:

$$J = \omega \frac{1}{N} \sum_{i=1}^{N} G_{1i} - (1 - \omega) \frac{1}{N} \sum_{i=1}^{N} G_{2i}$$

$$\omega = 0$$

$$\omega = 0$$
 $\omega = 0.5$

$$\omega = 1$$

Dr. Corentin Coulais University of Amsterdam

We have used this technique to optimize for fracture anisotropy in chocolate

Conclusions

Enriched FEM...

- decouples discontinuities (interfaces, cracks) from discretization;
- can analyze immersed boundaries (fictitious domain) problems;
- can analyze numerical interfaces (coupling of non-conforming meshes)
 and contact with proper transfer of tractions;
- is stable and yields the same accuracy as standard FEM with fitted/ matching meshes;
- can effectively be used for topology optimization in combination with a parametrized level set;
- for topology optimization yields smooth *black-and-white* designs that are free from *staircased/pixelized* boundaries;

Thank you...

Dr. A. M. (Alejandro) AragónStructural Optimization and Mechanics
Precision and Microsystems Engineering

- ≥ a.m.aragon@tudelft.nl
- **** +31 15 27 82267
- http://www.3me.tudelft.nl/aaragon
- Building 34 Mekelweg 22628 CD DELFT The Netherlands

Faculty of Mechanical, Maritime and Materials Engineering