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Abstract

Heat stress is the leading climate-related cause of premature deaths in Europe. Major

heatwaves have struck Europe recently and are expected to increase in magnitude

and length. Large cities are particularly threatened due to the urban morphology and

imperviousness. Green spaces mitigate heat, providing cooling services through

shade provision and evapotranspiration. However, the distribution of green cooling

and the population most affected are often unknown. Here we reveal environmental

injustice regarding green cooling in 14 major European urban areas. Vulnerable

residents in Europe are not concentrated in the suburbs but in run-down central areas

that coincide with low-cooling regions. In all studied areas, lower-income residents,

tenants, immigrants and unemployed citizens receive below-average green cooling,

while upper-income residents, nationals and homeowners experience above-average

cooling provision. The fatality risk during extreme heatwaves may increase as

vulnerable residents are unable to afford passive or active cooling mitigation.
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Data availability

The model inputs used in this study and the resultant maps are publicly available on

the original open access source (Extended Data Table 1). The EC measurements used

to validate the model should be requested for each location separately. The social

indicators are available at the ArcGIS Living Atlas of the World under the Esri

agreement or at the national census bureau of each country. Esri provides the

standardization and redistribution of the indicators in granulated points from the

sources: Michael Bauer Research GmbH (EU), Nexiga (DE), AIS and Instituto Nacional

de Estadistica (Spain) and 4orange (the Netherlands). The green cooling simulations

and the 10-m-resolution GCoS maps for all functional urban areas are available via

Zenodo at https://doi.org/10.5281/zenodo.10708300 (ref. ) Functional urban areas

from Global Human Settlement Layer (GHSL-FUA)  used to define the urban areas is

available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc-

opendata/GHSL/GHS_STAT_UCDB2015MT_GLOBE_R2019A/V1-2/ (last accessed 4 April

2023).

Code availability

The SCOPE model (2.0) code for MATLAB (R2018b or higher) is available at ref. . The

R package to download, preprocess the input data and run the SCOPE model is

available by rSCOPE (2.0)  at https://doi.org/10.5281/zenodo.6204580. The code to

calculate and map the GCoS is available at https://github.com/AlbyDR/GCoS

(https://doi.org/10.5281/zenodo.10708300) .
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