Preventing botnets

- Traditional
 - code analysis and finding malware fingerprints

- Code/binary analysis is mostly manual and increasingly harder
 - Code obfuscation
 - Encryption
 - Self-modifying

- Behavior-based analysis is much harder to thwart
 - Bots need to communicate!
Preventing botnets

- Traditional
 - code analysis and finding malware fingerprints
- Code/binary analysis is mostly manual and increasingly harder
 - Code obfuscation
 - Encryption
 - Self-modifying
- Behavior-based analysis is much harder to thwart
 - Bots need to communicate!

Lots of data available...
Binary code (Zeus)
Network traffic (HLUX2)
Classic Approach:

1. take a huge data set
2. compute features
3. train a classifier
4. deploy the classifier on test

Machine learning

- train data
- learning algorithm
- model
- test data
- output
The colors indicate the type of model, from left to right: **logical**, probabilistic and **geometric**.

- **Logical** models include: association rules, trees & rules, Naïve Bayes, and mixture models.
- **Probabilistic** models include: support vector machines, linear classifiers, and k-means.
- **Geometric** models include: k-means and nearest neighbour.

Based on Peter Flach
Classic ML fails in cyber security

- Large majority (> 99%) of cases are benign!
 - adapt data/models, otherwise no positives

- Data is massive and keeps coming in!
 - need to count quickly, reduce false positives

- There is an opponent, they learn too!
 - avoid using generic fingerprints/simple rules

- Privacy makes data inaccessible...
Bloom filter: dealing with massive data

http://www.jasondavies.com/bloomfilter/

Key: Add

Definitely not there.
Course

- Read scientific papers, use techniques on real data:
 - Credit fraud data from Adyen
 - Botnet traffic from HLUX2
 - NetFlow traces, perhaps from EEMCS…
 - ...

- Learn by doing in labs, an exam on content