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•  Some background 
•  Some technical solutions and results / 

experiences of the following: 
– Automated feedback 
– Visualizations 
–  Interactive tasks 
– Support for better human feedback 

•  References 
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•  The roots of Learning + Technology research group  (LeTech) 
originate in the intensive work for improving education in very 
large programming, data structures and algorithms courses at 
Helsinki University of Technology, started in early 1990’s.  
–  How to engage and activate students in large courses (200 - 1000+) 

students, where human resources for guidance and assessment are 
limited? 

–  How to provide them personal feedback on their work? 
•  Tools for automatic assessment and visual interaction 

–  Not all students are learning oriented. 
•  Main context: programming education, but many results are 

context-free. 

Challenges 
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•  Students must be active during the whole course. 
–  Weekly / biweekly compulsory assignments to 

encourage learning and gradual building of 
competences (activation) 

–  Providing model solutions is not good enough.  Personal 
feedback on their own solutions is needed (supporting 
reflection) 

–  Personal feedback must be received soon, not 1-2 
weeks later (supporting reflection). 

•  Assignments must a have a significant effect on the 
final grade (motivation to do the work). 

Principles 
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•  Automated feedback 
•  Visual simulation tasks 
•  Gamification & progress feedback 
•  Support for better human feedback 

Some solutions 
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•  Note: We are not talking about MCQs 
•  Possible when analyzing submissions which are 

presented using a formal representation, e.g., 
–  Programming assignments (Goblin, Web-CAT) 
–  Algorithm simulation tasks (Malmi et al. 2004, 

Karavirta & Shaffer, 2013, OpenDSA) 
–  Program simulation tasks (Uuhistle, Sorva 2012) 
–  Database queries  
–  Other: Mathematical formalisms, physics 

calculations (STACK) 

Automated feedback 
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•  Could be given on  
– Program correctness (automatic tests) 
– Quality of students’ own testing 
– Program structure 
– Use of required / forbidden language 

features 
– Program runtime effectiveness 
– Required algorithms (prototype only) 

 

Automatic feedback on programs 

26.1.2016 



   

•  Computing involves many abstract and intangible concepts 
and processes. 

•  Visualizations can help to concretize these concepts and 
processes. 

•  Viewing visualizations is not enough but students have to 
be engaged with them (Hundhausen et al. 2002) 
–  Students often do not concentrate when viewing animations 

(Sirkiä, Sorva 2015).  
•  Interactive simulation tasks with instant feedback allow 

students to reflect on and tune their mental model of the 
concept or process. 

•  Demo 
–  JSAV algorithm simulation tasks and A+ environment 

 

Visual simulation tasks 
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•  Immediate feedback supports students’ reflection on the 
task while engaged with it. 

•  Resubmissions should have a smallish limit, unless the 
basic task can be parameterized and provided as new 
variation every time (Malmi et al. 2004, 2005) 

•  Some basic tasks can be fully automated and therefore 
human tutoring efforts can be directed to guiding more 
advanced assignments. (Malmi et al. 2005) 

•  Resubmissions may promote trial-and-error working for 
some students. (Karavirta et al. 2006; Auvinen, 2015) 

•  Many students aim at full points, when not needed for the 
best grade (Malmi et al. 2005) 

•  Some students do not test their programs themselves but 
use automatic testing only (Edwards, 2003) 

Some results and experiences 
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•  Parsons problems present a simplified 
program construction exercise: program 
puzzle. 

•  js-Parsons implement a 2D Python 
puzzle. 

•  Demo 

 

Program construction exercises 
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•  Analysing the trace allows to investigate 
the programming process, not only the 
final submission. (Helminen et al. 2012) 

Trace analysis 
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•  Some students have bad or inefficient 
study habits, like procrastination and 
trial-and-error. (Auvinen, 2015) 

•  Monitoring study process and targeted 
feedback could help here. 

Feedback on study process 
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Achievement badges 
Category Criteria Value of X 

(B, S, G) 
Example 
icon 

Time 
management 

50% of points of the round 
earned at least X day(s) 
before the deadline 

1, 3, 7 

Learning Round completed with X% 
score 

50, 75, 100 

Carefulness X assignments with perfect 
score using only one attempt 

5, 10, 15 
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Heatmaps 
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•  Intervention studies with gamified / non-gamified 
feedback 
–  Achievement badges  
–  Heatmaps 

•  Students with performance orientation respond 
positively to achievement badges while students with 
performance-avoidance orientation take advantage 
of neutral visualizations 

•  Effects were, unfortunately, visible only with high-
performing students.  Low-performing students still 
struggle. 

•  (Auvinen, Hakulinen, Malmi 2015) 

Results 
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•  Automatic assessment of project reports, 
essays and exams is not yet available. 

•  Manual grading is slow and feedback 
often poor due 

•  Multiple assistants grading the same 
tasks may result in inconsistencies in 
grading and level of feedback. 

Tailored human feedback 
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•  Rubrics-based grading (Auvinen, 2011) 
•  Ready-made but editable feedback 

phrases 
•  Fully tailorable (rubrics, points, phrases) 
•  Exam grading by annotating scanned 

pdfs of exam papers. 
•  Demo (Rubyric) 

Rubyric 
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