
Using automatic and semi-
automatic feedback to support
students's learning process

Lauri Malmi
Aalto University
Department of Computer Science

26.1.2016

•  Some background
•  Some technical solutions and results /

experiences of the following:
– Automated feedback
– Visualizations
–  Interactive tasks
– Support for better human feedback

•  References

Contents

26.1.2016

•  The roots of Learning + Technology research group (LeTech)
originate in the intensive work for improving education in very
large programming, data structures and algorithms courses at
Helsinki University of Technology, started in early 1990’s.
–  How to engage and activate students in large courses (200 - 1000+)

students, where human resources for guidance and assessment are
limited?

–  How to provide them personal feedback on their work?
•  Tools for automatic assessment and visual interaction

–  Not all students are learning oriented.
•  Main context: programming education, but many results are

context-free.

Challenges

26.1.2016

•  Students must be active during the whole course.
–  Weekly / biweekly compulsory assignments to

encourage learning and gradual building of
competences (activation)

–  Providing model solutions is not good enough. Personal
feedback on their own solutions is needed (supporting
reflection)

–  Personal feedback must be received soon, not 1-2
weeks later (supporting reflection).

•  Assignments must a have a significant effect on the
final grade (motivation to do the work).

Principles

26.1.2016

•  Automated feedback
•  Visual simulation tasks
•  Gamification & progress feedback
•  Support for better human feedback

Some solutions

26.1.2016

•  Note: We are not talking about MCQs
•  Possible when analyzing submissions which are

presented using a formal representation, e.g.,
–  Programming assignments (Goblin, Web-CAT)
–  Algorithm simulation tasks (Malmi et al. 2004,

Karavirta & Shaffer, 2013, OpenDSA)
–  Program simulation tasks (Uuhistle, Sorva 2012)
–  Database queries
–  Other: Mathematical formalisms, physics

calculations (STACK)

Automated feedback

26.1.2016

•  Could be given on
– Program correctness (automatic tests)
– Quality of students’ own testing
– Program structure
– Use of required / forbidden language

features
– Program runtime effectiveness
– Required algorithms (prototype only)

Automatic feedback on programs

26.1.2016

•  Computing involves many abstract and intangible concepts
and processes.

•  Visualizations can help to concretize these concepts and
processes.

•  Viewing visualizations is not enough but students have to
be engaged with them (Hundhausen et al. 2002)
–  Students often do not concentrate when viewing animations

(Sirkiä, Sorva 2015).
•  Interactive simulation tasks with instant feedback allow

students to reflect on and tune their mental model of the
concept or process.

•  Demo
–  JSAV algorithm simulation tasks and A+ environment

Visual simulation tasks

26.1.2016

•  Immediate feedback supports students’ reflection on the
task while engaged with it.

•  Resubmissions should have a smallish limit, unless the
basic task can be parameterized and provided as new
variation every time (Malmi et al. 2004, 2005)

•  Some basic tasks can be fully automated and therefore
human tutoring efforts can be directed to guiding more
advanced assignments. (Malmi et al. 2005)

•  Resubmissions may promote trial-and-error working for
some students. (Karavirta et al. 2006; Auvinen, 2015)

•  Many students aim at full points, when not needed for the
best grade (Malmi et al. 2005)

•  Some students do not test their programs themselves but
use automatic testing only (Edwards, 2003)

Some results and experiences

26.1.2016

•  Parsons problems present a simplified
program construction exercise: program
puzzle.

•  js-Parsons implement a 2D Python
puzzle.

•  Demo

Program construction exercises

26.1.2016

•  Analysing the trace allows to investigate
the programming process, not only the
final submission. (Helminen et al. 2012)

Trace analysis

26.1.2016

26.1.2016

26.1.2016

•  Some students have bad or inefficient
study habits, like procrastination and
trial-and-error. (Auvinen, 2015)

•  Monitoring study process and targeted
feedback could help here.

Feedback on study process

26.1.2016

Achievement badges
Category Criteria Value of X

(B, S, G)
Example
icon

Time
management

50% of points of the round
earned at least X day(s)
before the deadline

1, 3, 7

Learning Round completed with X%
score

50, 75, 100

Carefulness X assignments with perfect
score using only one attempt

5, 10, 15

26.1.2016

Heatmaps

26.1.2016

•  Intervention studies with gamified / non-gamified
feedback
–  Achievement badges
–  Heatmaps

•  Students with performance orientation respond
positively to achievement badges while students with
performance-avoidance orientation take advantage
of neutral visualizations

•  Effects were, unfortunately, visible only with high-
performing students. Low-performing students still
struggle.

•  (Auvinen, Hakulinen, Malmi 2015)

Results

26.1.2016

•  Automatic assessment of project reports,
essays and exams is not yet available.

•  Manual grading is slow and feedback
often poor due

•  Multiple assistants grading the same
tasks may result in inconsistencies in
grading and level of feedback.

Tailored human feedback

26.1.2016

•  Rubrics-based grading (Auvinen, 2011)
•  Ready-made but editable feedback

phrases
•  Fully tailorable (rubrics, points, phrases)
•  Exam grading by annotating scanned

pdfs of exam papers.
•  Demo (Rubyric)

Rubyric

26.1.2016

26.1.2016

1.  Auvinen, Tapio. "Rubyric." Proceedings of the 11th Koli Calling International Conference on Computing Education Research. ACM, 2011.
2.  Tapio Auvinen. Harmful Study Habits in Online Learning Environments with Automatic Assessment. Accepted for publication in Proceedings of

the 2015 International Conference on Teaching and Learning in Computing and Engineering (LaTiCE), Taipei, Taiwan, April 2015.
3.  Tapio Auvinen, Lasse Hakulinen, and Lauri Malmi. Increasing Students’ Awareness of their Behavior in Online Learning Environments with

Visualizations and Achievement Badges, IEEE Transactions on Learning Technologies, vol 8 no 3, pp- 261-273.
4.  Edwards, Stephen H. "Using test-driven development in the classroom: Providing students with automatic, concrete feedback on performance."

Proceedings of the International Conference on Education and Information Systems: Technologies and Applications EISTA. Vol. 3. 2003.
5.  Lasse Hakulinen and Tapio Auvinen. The Effect of Gamification on Students with Different Achievement Goal Orientations. In Proceedings of

the 2014 International Conference on Teaching and Learning in Computing and Engineering, Kuching, Malaysia, pages 9–16, April 2014.
6.  Juha Helminen, Petri Ihantola, Ville Karavirta, and Lauri Malmi. 2012. How do students solve parsons programming problems?: an analysis of

interaction traces. In Proceedings of the ninth annual international conference on International computing education research (ICER '12). ACM,
New York, NY, USA, 119-126.

7.  C. Hundhausen, S. Douglas, and J. T. Stasko. A meta-study of algorithm visualization effectiveness. Journal of Visual Languages and
Computing, 13(3):259–290, 2002.

8.  Ville Karavirta and Clifford A. Shaffer. 2013. JSAV: the JavaScript algorithm visualization library. In Proceedings of the 18th ACM conference on
Innovation and technology in computer science education (ITiCSE '13). ACM, New York, NY, USA, 159-164.

9.  V. Karavirta, A. Korhonen, L. Malmi, On the use of resubmissions in Automatic Assessment systems. Computer Science Education, vol 16 no
3, 2006, pp. 229-240.

10.  L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, P. Silvasti: Visual Algorithm Simulation Exercise System with Automatic
Assessment: TRAKLA2. Informatics in Education, vol 3 no 2, 2004, pp. 267-288.

11.  L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, Experiences on Automatically Assessed Algorithm Simulation Exercises with Different
Resubmission Policies. ACM Journal of Educational Resources in Computing, vol 5 no 3, Article 7, 2005.

12.  Sirkiä, T., & Sorva, J. (2015, July). How Do Students Use Program Visualizations within an Interactive Ebook?. In Proceedings of the eleventh
annual International Conference on International Computing Education Research (pp. 179-188). ACM.

13.  J. Sorva: Visual program simulation in introductory programming education, Doctoral Dissertation, Aalto University 2012.

References

26.1.2016

1.  OpenDSA project home page: Algoviz.org/
OpenDSA

2.  Rubyric, https://rubyric.cs.hut.fi/ or https://
rubyric.com/

3.  STACK: System for Teaching and
Assessment using a Computer algebra
Kernel: http://stack.bham.ac.uk/

4.  Web-CAT home page: http://web-cat.org/

Systems

26.1.2016

Thank you

26.1.2016

http://cse.aalto.fi/en/research/learning_technology/

Learning + Technology group

