Calculus
 a blended approach

Hans Cuypers

A new Bachelor, a new Calculus course

Basic courses
Electives

User Society and Enterprise $90 c p$

Major

A new Bachelor, a new Calculus course

Calculus

Major

Challenges

- One course for all freshmen (2015: 2248 students)
- Challenging for all students (from Industrial Design to Physics and Math)
- Fun, good scores on student evaluations
- Higher passing rate (from 50\% to 75\%)
- Less hours from staff

Let students do the work

- Students work from or even before day one
- Students can work where and whenever they want
- Students can and should work together

Let students do the work

- Students work from or even before day one
- Students can work where and whenever they want
- Students can and should work together
- Students get personalized feedback

- Students get rewards for their own work

A new blended approach

With four parts

- Introduction to the concepts
- Exploration of the material and practicing
- Cooperation and discussion
- Testing

A new blended approach

With four parts

- Introduction to the concepts
- Exploration of the material and practicing
- Cooperation and discussion

Introduction to the concepts

- 4+2 hours of lectures by our best teachers
- the +2 hours are spent on rehearsal and feedback (using clickers)
- supported by video lectures and web lectures

Exploration and practicing

Find the derivative of the function h given by

$$
h(x)=(\sqrt{x}+8)^{8}
$$

$$
h^{\prime}(x)=8 \cdot(\sqrt{x}+8)^{7} \quad \text { suomit }
$$

- written homework handed in every week
- randomly chosen exercises graded and commented
- online homework, parametrized exercises with custom feedback
- results are all registered

Sorry, this is not the derivative of $(\sqrt{x}+8)^{8}$.
You did not appy the chain rule correctly.
Try to find functions f and g such that $f(g(x))=(\sqrt{x}+8)^{8}$ and then use the chain rule.
Did you forget to multiply with the derivative of g ?
Try again, or have a look at the solution.
hint solution

We can take $f(x)=x^{8}$ and $g(x)=\sqrt{x}+8$.
So, the derivative of $(\sqrt{x}+8)^{8}$ equals $h^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)=8 \cdot(8+\sqrt{x})^{7} \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{x}}$ Score: 0 points.

Cooperation and discussion

- one hour meeting with 8 students and a tutor within a block of 2 hours
- students have the lead
- group can communciate through forum or WhatsApp
- trained tutor guides students (staff members and student assistents)
- tutor has overview of achievements of students and provides feedback
- tutor registers homework and checks presence

Ik heb geen idee wat ik hier zou mocten doen:
Suppose f and g are functions given by $f(x)=(x+4) 2-3$ and $g(x)=x^{2}+2$.
Determine $f \circ g$.
fog? ik hoop datilik nietal té veel vergeten ben > _ s

Q Re: fog?
by Alex de Jong-Wednessly, 2 September 2015, 1029 PM

Bekik eens pagina 35 (secion p. 5 defrition 4) daar shat dat hele principe uiggeegad zover iv weet.

2. Re:fog?
 by Arre Fey - Thursday, 3 Sexpember 2015, 12:35 PM

Dank je Alex, dat wibe k oak net zeggen:)

Testing

- Formative (but with rewards)
- MC-test on highschool math in week one (10\%)
Start at day one, or even before!
- weekly online tests (10\%) Study regularly!
- written test in week 5 (10\%) Wake up call!
- Summative

- Final Exam (70\%, but grade must be at least 5.0)

Testing

- Formative (but with rewards)
- MC-test on highschool math in week one (10\%) Start at day one, or even before!
- weekly online tests (10\%) Study regularly!
- written test in week 5 (10\%) Wake up call!
- Summative
- Final Exam (70\%, but grade must be at least 5.0)

With feedback for every student

Realization

- Build an electronic learning environment based on Moodle and MathDox to support students, tutors and teachers
(Now in use by more than 100 courses)
- Train teachers and tutors
- Give clear instructions to the students
- Constantly evaluate and improve
- Work and act as a team

Results: passing rates

Results: workload

Results: student satisfaction

