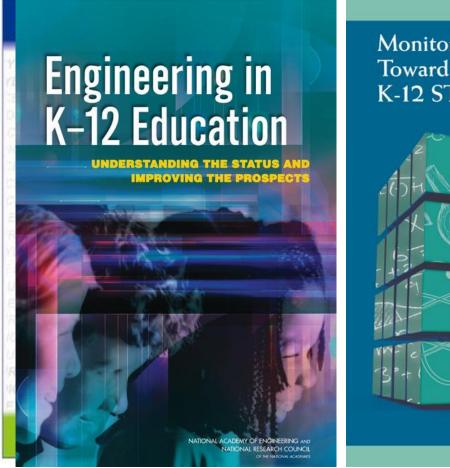


The Go-Lab ecosystem

nextlab GO-LAB

UNIVERSITY OF TWENTE.



Roadmap

- A need for engaging education
- Active learning/inquiry learning/online labs
- Embedding inquiry/online labs
- The Go-Lab ecosystem
 - Sharing platform
 - Authoring platform
 - Tutoring platform
- Simulations for University level physics
- Examples

We need engaging (science and engineering) instruction

Monitoring Progress Toward Successful K-12 STEM Education

A NATION ADVANCING?

nextlab

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

Forms of engaged learning

Experiential Problem-based

Peer tutoring

Case-based

Exploratory

Inquiry Learning/ Online Labs

Collaborative learning

Self-directed learning

Project-based

Co-funded by the EU (Horizon 2020 Programme) | NEXT-LAB

Forms of engaged learning

Problem-based nchored instruction

Peer tutoring

Exploratory

Experiential

Inquiry Learning/ Online Labs

Collaborative

learning Self-directed learning

Project-based

Case-based

Inquiry learning

Inquiry is an approach to learning that involves a process of exploration, that leads to asking questions and making discoveries in the search for new understandings

Based on "Foundations", Vol, 2, NSF, 2000

The role of technology

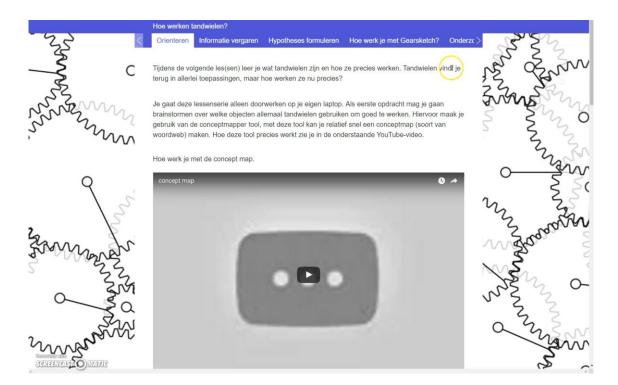
Online labs

nextlab

		Laboratory	🖉 📿 Available so	olutions 🛛 🕹 🌐	_	
Os		Input Parameters				1. JA 1. M
Sim		Projectile Diameter	Trajectory Angle	Projectile Velocity		
F	F Ever	Projectile Density Porous Rock	Target Density Sedimentary Rock Distance from crash site	T O km		ter O

Are online labs effective?

- Inquiry-based learning with online labs (and simulations) shows an advantage over expository instruction
- Students in online labs gain the same level of knowledge or a more advanced level of knowledge than students who learn in a real laboratory
- Online labs are only effective when well structured and designed, this is guidance, e.g., scaffolds included


de Jong, T. (2006). Computer simulations - Technological advances in inquiry learning. *Science*, *312*, 532-533.

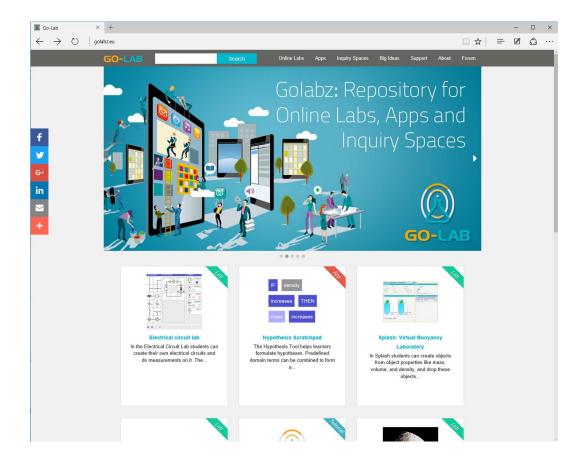
de Jong, T., Linn, M.C., & Zacharia, Z.C. (2013). Physical and virtual laboratories in science and engineering education. Science, *340*, *305-308*.

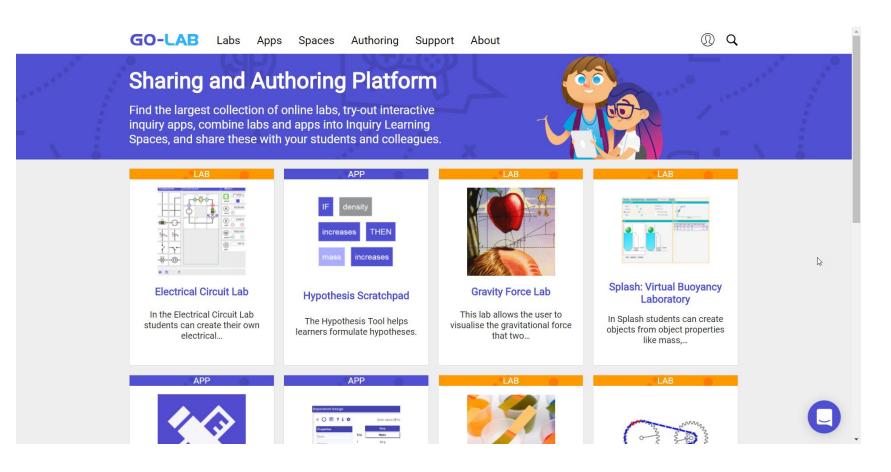
The Go-Lab innovation

- Many single applications
- Repositories of labs
 - PhET Chemcollective Physlets PhysicsInteractives
- Repositories of labs with embedding
 - Online Chem Labs AMRITA
- Repositories with embedding and scaffolding
 - SimQuest
- Repositories with embedding, "scaffolding" and authoring facilities
 - WISE
- Federation with embedding, interactive scaffolding, authoring facilities, and authoring support
 - Go-Lab

Inquiry Learning Space

The Go-Lab ecosystem

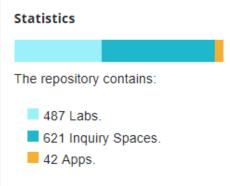




Sharing platform Authoring platform Support platform

The Go-Lab sharing platform (www.golabz.eu)

New Golabz interface



What makes Go-Lab unique?

- It collects online labs from around the world in one portal
- Teachers can combine each lab with texts, videos, and apps (scaffolds) in structured learning environments and very easily adapt these to their own needs
- These learning environments can be distributed to students with one click of the button
- And they can be directly shared with other teachers who can re-use them by copying and adapting
- And much much more ...

Is Go-Lab a success?

- Go-Lab sharing platform unique users:
 - 2014: 10,718 users
 - 2015: 15,152 users
 - 2016: 78,384 users
 - 2017: 53,476 users (until August)
 - 2017: 91,673 users (extrapolated)
- USA, Spain, UK, Greece, Portugal, the Netherlands, Germany, Italy, Turkey, Estonia, Switzerland, ...

Teachers' opinions on Golabz

Simulations for University level physics

- Aimed at undergraduates (optionally, higher secondary education)
- Material tends to be abstract and mathematical
- Even difficult to think of appropriate visualizations (for developer and teachers)
- Much physics has a "single solution": makes inquiry difficult

Example: Vector fields

- Used in many domains (e.g., electromagnetism)
- Difficult to visualize (vectors at each point in a 3D space)
- Three talks on visualization of vector fields and field lines at Multi-media and physics conference (2017)
 - One keynote: with a virtual reality solution (walk in a vector field)
 - Dynamic visualizations are particularly hard (which field lines to select)
 - Tens of years of research
- <u>http://go-</u> <u>lab.gw.utwente.nl/production/radar/build/del.html</u>

Example: Quantum mechanics

- "Realistic" visualisations are dangerous because of particle-wave duality
- See Road to reality by Roger Penrose for how a prominent researcher uses drawings to illustrate (understand) abstract concepts
- Double slit demo:

• <u>http://go-</u>

lab.gw.utwente.nl/sources/tools/qm/qm.html

Example: Space oddity or the taming gravity

goo.gl/SCDVvi

Example: Space oddity or the taming of gravity in an ILS

goo.gl/FyvRBT

Co-funded by the EU (Horizon 2020 Programme) | NEXT-LAB

GO-LAB