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ABSTRACT 
Student success in Mathematics is a global priority. Mathematics is a fundamental 
part of engineering programs in higher education, necessary for application in further 
engineering studies and yet often becomes a stumbling block for engineering 
students. Concerningly, even successful students frequently exhibit weak 
understanding of key mathematical concepts. The vector calculus course is known to 
be particularly challenging for students. 

While much research has been done into students’ constructions of core concepts at 
school level, less has been done on advanced mathematical topics such as vector 
calculus, yet this important insight has the potential to impact curriculum and 
pedagogy and to inform relevant support. This research conducted at the University 
of Twente, the Netherlands and the University of Cape Town, South Africa will use 
the constructivist APOS (Action-Process-Object-Schema) Theory to explore how 
students mentally construct concepts such as partial derivatives, directional 
derivatives and double integrals. APOS theory is based on the hypotheses that 
individuals construct mental actions, processes, and objects and organise them in 
schemas to solve mathematical problems. 

In this exploratory case study we attempt to explore and understand how our 
students understand the limits of integration of double integrals, informing the design 
of our teaching of vector calculus to improve students’ understanding and ultimately 
increase success. Students will participate in an assessment, complete a survey and 
participate in individual interviews. APOS Theory can be used directly in the analysis 
of data. Although initially intended we were unable to use this opportunity to compare 
the mental constructions of the cohorts from the two different universities and it will 
be assigned to future research.   



1 INTRODUCTION 
Mathematics is fundamental to the study of engineering courses and has an 
important bearing on the success of engineering students. There are increasing 
concerns about the transition from studying mathematics at high school to university 
and many research studies focus on “students' preparedness” to study higher 
education mathematics.  Engineering programs are known to be very selective and 
even for those students who meet the mathematics requirements for engineering 
enrolment, mathematics problems still persist and the lack of mathematical 
preparedness and mathematical proficiency remain a barrier to the study of 
engineering [1].  
 
Although there are various problems associated with this transition from high school 
to university it is said that the procedural approach to learning mathematics in school 
particularly aggravates that transition. Conceptual understanding is commonly known 
as deep level understanding of underlying concepts in mathematics and their 
relationships with each other. Recent research focus has been on students' 
understanding of mathematics at undergraduate level and a call for learning 
approaches in mathematics to change from procedural to conceptual and for 
teaching for conceptual understanding in mathematics. It is asserted that 
mathematics courses whilst providing necessary skills for the study of other courses 
should also foster cognitive and metacognitive abilities allowing students to be 
lifelong learners and creative and critical problem solvers. 
 
Studies have shown that in some cases there is a disconnect in the teaching and 
learning dynamic between mathematics taught and what students learn. This occurs 
for various reasons, some of which from the teaching end involve an underestimation 
of the difficulty of the concept for the student, an assumption that students have the 
prerequisite knowledge, and an unintentional omission of knowledge vital to students 
understanding the concept. Research into how students learn and understand 
mathematics allows for a better articulation of teaching practice and an alignment 
between what is taught and what students learn. In this research we recognise that 
in accordance with the philosophy of constructivism a better facilitation of student 
meaning making in mathematics is central to their learning. 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

1.1 Background  
Calculus is central to engineering. Calculus, as the mathematics of change and 
motion, is indispensable in any form of mathematical modelling. Ordinary and partial 
differential equations, multiple integrals, curl of a vector field, Stokes’ and Gauss’s 
Theorems are all found in any introductory textbook of engineering mathematics.  
 
Research suggests that vector calculus is one of the important and difficult courses 
in undergraduate mathematics studies, challenging for any student. Certain issues 
contribute to this challenge such as difficulty with imaging and sketching in three 



dimensions, a lack of problem-solving skills, students’ beliefs and students’ learning 
styles. Visualisation and the many conceptual challenges around continuity and 
differentiability in these contexts challenge all students. Another suggestion for 
students' difficulty is that the course demands of students that they absorb complex 
and new ideas in a limited time. It is our experience that students are already 
contending with an overload of other courses in their respective engineering 
qualifications. [2:23] point out that “the shift from single variable to multivariate 
calculus is more than simply a matter of the symbolic demand of calculus with more 
variables”.  
 
The study of functions of two variables forms an important foundation to the study of 
engineering. The double integral is frequently used in engineering from finding areas, 
volumes, areas of surfaces to computing mass, electric charge, work, centre of mass 
and moments of inertia to name some of the many applications.  
  
Our focus in this research on double integrals is driven by the fact that research in 
this area is not extensively explored. Research shows that students experience 
difficulties with double integrals especially with determining the limits of integration 
and changing of order of integration [3]. In the research reported on here we analyse 
students' mental constructions of the limits of integration of double integrals with the 
main objective to provide evidence to inform the teaching and learning of double 
integrals. The authors acknowledge that whilst there are various factors which 
impact student understanding this research focuses only on the cognitive facet of 
student understanding.  
 

1.2 Theoretical Framework  
This study uses APOS (Action-Process-Object-Schema) theory to analyse the 
mental constructions of students taking a test on double integrals. Learning takes 
place in four stages when students construct mathematical concepts. The four 
stages are: action, process, object and schema. Actions are a transformation of 
mathematical objects when students follow some explicit algorithm to perform the 
operation and this is perceived by the student as externally driven, for example 
something they would have been taught or from memory. This is a step by step 
procedure where one step cues the next. At this point students are not able to 
anticipate or skip any steps. Upon repeating the action and reflection on the action 
the student internalises the action as a process. At this stage the student has gained 
control over the actions. Upon performing actions on processes, it is said that 
students have encapsulated the process and constructed a cognitive object. “In 
many mathematical objects it may be necessary to de-encapsulate an object and 
work with the process from which it came” [4].  A schema for a mathematical concept 
is a student's response when presented with a mathematical problem situation and is 
based on their framework which is built from a collection of the students’ actions, 



processes, objects and other schema linking the mathematical concept to general 
principles.   
 
Genetic Decomposition (GD) or model of cognition of the mathematical concept 
describes a possible and not necessarily unique way in which a student constructs a 
mathematical concept in terms of the mental constructions in the framework of 
APOS theory. This description of specific mental constructions made by the student 
to develop an understanding of the concept is for design and analysis of teaching 
and learning.    


2 METHODOLOGY 
In this section we give the context, research design, research questions and propose 
a genetic decomposition for finding the limits of double integrals. 

2.1 Context 
Two cohorts of students were intended to contribute data for this project. The 
University of Twente participants were the electrical engineering and advanced 
technology students in their first year of study in 2019/2020 and for the University of 
Cape Town, the second-year engineering students in 2020. The project will 
investigate students’ understanding of a range of concepts in multivariable and 
vector calculus, including but not limited to directional derivatives, double integrals, 
divergence and curl.  
 
For the purposes of this paper we report on a pilot study that will inform the project 
going forward. Unfortunately, the global coronavirus crisis and ensuing constraints 
on our institutions resulted in data being gathered from 97 students from the 
University of Twente only. In essence this paper can be seen as a first step towards 
realising our vision of the project, that of understanding students’ mental 
constructions of vector calculus concepts to inform our teaching. In this concept 
paper we will focus on students' understanding of the limits of integration for double 
integrals. We shall present the analysis of that data as an indication of the 
expectation from the project. 
 

2.2 Research Design 
For each of the multivariable and vector calculus concepts of interest in the study we 
shall postulate a genetic decomposition (GD). A GD is a detailed description of a set 
of mental constructions a student will use in developing an understanding of the 
concept under study. These mental constructions are called actions, processes, 
objects and schemas and play a role in the development of an understanding of the 
concept. Our GD for determining the limits of integration for double integrals is 
informed by past research, literature and the researchers’ mathematical knowledge 
and teaching experience.  Arriving at a genetic decomposition which describes the 



students’ actual mental constructions and informs the teaching of the mathematical 
concept requires many cycles of research involving GD posing or refining, classroom 
activities and data gathering [4].  
 
This research describes only the first cycle in this process. Students’ understanding 
of the concepts will be analysed through the lens of APOS theory using data from 
assessment and, where possible, interviews. The data presented in this paper were 
drawn from a test taken by the participants from the University of Twente. The tests 
were graded, and the responses analysed using APOS Theory by one of the 
authors. The grading and the analysis were also undertaken by the other author for 
consensus.  
 
The two authors are the lecturers and graders for the applicable mathematics 
courses and hence have access to students’ test responses. To include students’ 
written work in a publication ethics approval will be applied for. For this report on the 
pilot study no direct examples of student work will be presented.  
 
The limitations of this research study as a consequence of the global pandemic and 
lockdown was that we were unable to further probe students' mental constructions of 
the vector calculus concept during interviews and to compare the mental 
constructions of the cohorts from the two different universities. 
 

2.3 Research Questions 
“What are Vector Calculus students’ visual and analytic understanding of vector 
calculus concepts? 
This paper contributes to answering the sub question: “What are Vector Calculus 
students’ visual and analytic understanding of the limits of integration for double 
integrals?”  
 
2.4 Genetic Decomposition for Double Integrals 
In this section we start with prerequisite knowledge that students will need before 
performing the mathematical task and propose a genetic decomposition of finding 
the limits of integration of double integrals. 
 
Prerequisite knowledge: 

● Recall of and understanding of notation encountered previously in differential 
calculus- e.g 𝑑𝑑𝑑𝑑 - with respect to the variable 𝑑𝑑, 𝑑𝑑𝑑𝑑 - with respect to 𝑑𝑑. 

● Techniques previously used in single integration 
● The integrals of polynomial, trigonometric, inverse trigonometric, exponential 

and natural logarithmic functions; 
● Determining limits for the definite integral and basic algebraic operations  
● Double integrals over rectangular regions 

 



Actions: These are mechanical procedures which lack meaningful internal relations 
to other mathematical ideas. At this stage there is a transformation of a mathematical 
object by applying a rigid step by step algorithm which is perceived as externally 
driven. A student evaluates a double integral by computing an iterated integral over a 
region which is either a: 
Type 1 region: integration is first with respect to 𝑑𝑑, in the vertical direction (bottom to 
top) and then with respect to 𝑑𝑑 by seeing the region between two functions of 𝑑𝑑 and 
two vertical lines respectively, or a 
Type 2 region: integration is first with respect to 𝑑𝑑, in the horizontal direction (left to 
right) and then with respect to 𝑑𝑑 by seeing the region between two functions of 𝑑𝑑 and 
two horizontal lines respectively 
At this stage the student has an action understanding of setting up a double integral 
with limits of integration. 
 
Process: Students when repeating actions and reflecting upon actions will internalize 
them. Specifically, the student can imagine performing the transformation without 
having to execute each step explicitly, seeing a step by step algorithm as no longer 
necessary. When faced with the iterated integral where the integration order is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 
integration with respect to 𝑑𝑑 is required first and then followed by integration with 
respect to 𝑑𝑑, students will no longer need to identify the region as type 1. Students 
will realise that integration will take place vertically first followed by horizontally. Now 
students will identify the function of 𝑑𝑑 which lies above the region i.e the region is 
bounded above by that function and the function of 𝑑𝑑 which lies below the region i.e 
the region is bounded below by the function for values of 𝑑𝑑 in an interval  (left to 
right). Similarly, students will proceed when the iterated integral requires integrating 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, first with respect to 𝑑𝑑 and then with respect to 𝑑𝑑. 
 
Object: When a student applies and can imagine applying such transformations then 
it is said that the process is encapsulated into a cognitive object. The student with an 
object conception of the mathematical operation may, unprompted and needing no 
further instructions, recognise the applicability of the mathematical operation in a 
given problem situation. For example, the student understands that for double 
integrals we are sweeping the area under volume. Realising that taking slices of the 
volume into two dimensional slices of area, computing that area of each slice and 
summing over all areas of slices will give the volume as a whole.  
In our particular test example, a student would when confronted with setting up an 
iterated integral in the order 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 will then “de-encapsulate” the object to the 
process that it came from and apply it to a particular situation. For example, here a 
student will note that when looking at the order of integration firstly with respect to 𝑑𝑑 
and then with respect to 𝑑𝑑. Taking slices of the volume yield the same lower 
boundary function for the region in question but not the same upper boundary 
function. That would require thinking of the region as a sum of two regions over 
which integration will take place and hence the double integral in question will be 



reflected as a sum of two double integrals each of which is bounded by the same 
function above and below.  
 
 Schema: This is a coherent collection of actions, processes and objects and other 
previously constructed schemas. 
 

3 RESULTS AND DISCUSSION 
Two items from a mathematics test taken by 97 electrical engineering students are 
analysed here. Focus is on the students who interpreted the task incorrectly. It must 
be noted that this is an initial analysis as further probing by interviewing students to 
obtain a clearer understanding of students’ mental constructions could not take 
place. 

 

Fig. 1. Test item on double integral 
 
The density of lamina D at point (𝑑𝑑,𝑑𝑑) is twice the distance from the point to the y-
axis. Write down (but do not evaluate) an iterated double integral to represent the 
mass of lamina D shown below. Do this first in the order 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and then in the order 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. D is bounded by 𝑑𝑑 = 0, 𝑑𝑑 = 0, 𝑑𝑑 = 2 and 𝑑𝑑 = 3 − 𝑑𝑑2 . 

 
3.1 Double integral APOS analysis, UT electrical engineering 
Given the context of the test question item 1 required students to set up an iterated 
integral for integration in the direction 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. The correct interpretation of item 1 
would result in integral 1 as shown below: 

Integral 1:  ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑�3−𝑦𝑦
0 𝑑𝑑𝑑𝑑2

0   where 𝜎𝜎 is the density of the lamina. 
 
Student Responses: 

Four students responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑3−𝑥𝑥2

0 𝑑𝑑𝑑𝑑2
0  

Students displayed the action stage and were able to determine the curves that 
make left and right boundaries of the region. They recognised that integration firstly 
was with respect to 𝑑𝑑 and this formed the ‘nested’ integral and that the outer integral 
limits go from 𝑑𝑑 = 0 to 𝑑𝑑 = 2 . However they failed to recognise that the boundary 



curves are functions of 𝑑𝑑 and not 𝑑𝑑. It may be correct to suggest that the students are 
in the action stage and have not made the transformation to the process stage yet. 

Two students responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑�𝑦𝑦−3
0 𝑑𝑑𝑑𝑑2

0  
Here students having successfully recognised the order of integration have 
proceeded to find 𝑑𝑑 = 𝑓𝑓(𝑑𝑑) for boundary curves, thus showing that a process stage 
has been reached. However, an algebraic error leads the student to an upper limit of 
𝑑𝑑 = �𝑑𝑑 − 3 and the student is unable to reflect that 𝑑𝑑 ≤ 3  for the region under 
consideration. The object stage has not been reached since a real understanding of 
limits as a description of the region should have flagged the domain of the upper 
bound function for 𝑑𝑑. 
One student responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑1

�3−𝑦𝑦 𝑑𝑑𝑑𝑑2
0   

Here the student changes the region of integration and integrates from right to left on 
the inner integral. There is a recognition that the inner limits of integration need to be 
functions of 𝑑𝑑, yet the visual interpretation is not present. It may be said that the 
student is not following an algorithmic approach here and cannot be said to have 
reached the action stage. 
One student responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑2

0 𝑑𝑑𝑑𝑑3
0  

This student proceeds as if the region is a rectangular one. Therefore, the student 
does not show knowledge of an algorithm in terms of how to proceed. It can be said 
that this student has not reached the action stage. In fact, prerequisite knowledge of 
integration is lacking. 
 
Given the context of the test question, item 2 required students to set up an iterated 
integral for integration in the direction 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. The correct interpretation of item 2 
would result in integral 2 as shown below: 

Integral 2 : ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑�3−𝑦𝑦
0 𝑑𝑑𝑑𝑑2

0 = ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑2
0 𝑑𝑑𝑑𝑑1

0 + ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑3−𝑥𝑥2

0 𝑑𝑑𝑑𝑑√3
1   where 𝜎𝜎 is the density 

of the lamina. 
 
Student Responses: 

Eighteen students responded with:  ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑3−𝑥𝑥2

0 𝑑𝑑𝑑𝑑√3 
0  

These students are considering the entire area as if it were bounded by the same 
function above, not realising that  0 ≤ 𝑑𝑑 ≤ 3 − 𝑑𝑑2 is not true for the entire interval, i.e 
𝑑𝑑 ∈ [0,3]. Students have merely followed steps here without acknowledging visually 
the shape of the area which in this case warrants that the area be represented as a 
sum of two integrals. There appears to be an action stage reached but certainly no 
process stage can be observed. 

Three students responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑2
0 𝑑𝑑𝑑𝑑1

0 + ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑3−𝑥𝑥2

0 𝑑𝑑𝑑𝑑2
1   

Students are at the process stage where the shape of the region is recognised to 
give rise to the sum of two integrals. There is however a failure to recognise that 𝑑𝑑 =



2  is clearly outside the region under consideration. It is clear from the diagram given 
in the test question that 𝑑𝑑 does not extend to 2. 

One student responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑2
0 𝑑𝑑𝑑𝑑1

0 + ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑√𝑦𝑦
0 𝑑𝑑𝑑𝑑√3

1  
This student has recognised that the region should be split in two regions and 
integrals evaluated over each of these regions should be summed. The student 
seems to be at the process stage as the student reads bounds bottom to top, 
however does not show an understanding that the limits of the inner integral are 
functions of 𝑑𝑑, which is an indication that the student is actually at the action stage. 

One student responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑2
0 𝑑𝑑𝑑𝑑1

0 + ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑�3−𝑦𝑦2

0 𝑑𝑑𝑑𝑑√3
1  

The actions of “read region bottom to top” and “find bounding curves” and “bounding 
curves of inner integrals must be 𝑑𝑑 = 𝑓𝑓(𝑑𝑑)” when the nested integral calls for 
integration with respect to 𝑑𝑑 become internalised as a process that results in an 
object. Recognising the context here where the given integral when the order is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
is the sum of two integrals is applicable in the given problem situation calls for 
decapsulating the object from the process it came from. However here the student 
has given the inner function of the second integral as a function of 𝑑𝑑 whereas it 
should be given as a function of 𝑑𝑑. 

One student responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑2
0 𝑑𝑑𝑑𝑑1

0 + ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑0
3−𝑥𝑥2 𝑑𝑑𝑑𝑑√3

1  
This student is in the action stage as shows an understanding of the limits of 
boundary curves however there is a swapping around of upper and lower limits. 
One student responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑3

0 𝑑𝑑𝑑𝑑2
0  

As with the similar 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 construction this represents a failure of prerequisite 
knowledge. 

One student responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑2
3−𝑥𝑥2 𝑑𝑑𝑑𝑑√3

0  
This student has a vague grasp of how to set up integrals but seems to lack 
geometric understanding of what the limits represent. This represents a failure of 
prerequisite knowledge. 

One student responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑2
0 𝑑𝑑𝑑𝑑�3−𝑦𝑦

0  
Here there is merely a swapping of the limits from the 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 form. Fundamental 
knowledge when setting up double integrals requires firstly to focus on the inner 
integral and to consider the limits of that integral that are boundary curves defined as 
functions of 𝑑𝑑. It is worrisome that the limits on the integral on the outer integral are 
functions of 𝑑𝑑 and therefore not constant making the integral meaningless. 

One student responded with: ∫ ∫ 𝜎𝜎𝑑𝑑𝑑𝑑2
0 𝑑𝑑𝑑𝑑√3

−√3  
This is a reflection of student thinking that intersections and roots of functions are 
often limits of integration. Here student has solved for roots of 𝑑𝑑 = 3 − 𝑑𝑑2 and used 
as limits. There is a failure to relate these roots to the diagram and hence to the 
limits of integration. 
 
 



4. SUMMARY AND FUTURE RESEARCH  
 
Although this is a pilot study and the findings cannot be generalised the APOS 
theory provided a valuable exploration of the learning of the limits of integration of 
double integrals in a vector calculus class. We note that the part of the question that 
required the action level of understanding, setting up a double integral with limits of 
integration over a type 1 region or a type 2 region, was well within the capabilities of 
the majority of the students. However, the responses to the part of the question 
requiring an object level of understanding of limits of a double integral were 
problematic for a number of students. Although a graphical representation was given 
students found difficulty in identifying the region of integration. The majority of those 
students who had difficulty merely followed steps without acknowledging visually the 
shape of the region which warranted that it be represented as a sum of two double 
integrals. This suggests that the students' engagement of the concept of a double 
integral and how it refers to the region is not well grounded. 
 
In partially answering  our research question at this stage of analysis in the research 
project, we observe that some students find difficulty with recognising the region of 
integration if it is other than rectangular, some find difficulty when dealing with 
integration first with respect to y and there is no understanding that the limits of 
integration of the inner integral are functions of x and similarly for the integration with 
respect to x first, and others lack a geometric understanding of what the limits of 
integration represent.  
 
Important insights have been gained from students' mental constructions of limits of 
integration for double integrals which the next cycle of teaching will focus on. 
Reflecting on teaching this concept, more consideration will be given to graphical 
representation of regions and how the choice of integration in one direction first and 
then the other depends on the region of integration and hence implies the choice of 
limits of integration.  
 
This pilot study has not only provided valuable insights on students' mental 
constructions of double integrals but has also illustrated the potential of the APOS 
framework to be used in future research and to influence teaching and learning of 
vector calculus concepts. This aligns with our intention to present implications for the 
teaching and learning of Vector Calculus concepts that promote deeper conceptual 
understanding. 
  
The next stage of this research would involve exploring student understanding of the 
limits of integration of double integrals with a larger population and, as initially 
intended, the comparison with the second research cohort including probing of this 
understanding using interviews.  We suggest that future research could study the 
impact of such teaching of double integrals on students' learning. 
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