Framework for Undergraduate Mathematical Digital Testing

Alisa Lochner

University of Twente

a.j.Lochner@student.utwente.nl

Why?

The need

- Larger student numbers¹
- Reduced Resources¹

The advantages

- Can be as reliable as constructed-response tests²
- Possibility of covering a wider variety of topics²

MCQ example

Torres, Lopes, Babo and Azevedo (2009)

Multiple Choice Questions (MCQ) Concerns

- Choosing instead of making^{1,2}
- Difficulty
- Guessing³

1: Nicol (2007) 2: DiBattista and Kurzawa (2011) 3: Quaigrain and Arhin (2017)

MCQ Writing Framework

Content

- Every item should concern one specific mental behaviour
- Use novel material to limit simple recall *Style*
- Minimise the amount of reading in each item *Choices*
- Research suggests three is adequate
- Make sure none of the choices overlap
- Keep choices homogeneous

Haladyna, Downing, & Rodriguez (2002)

(weak) MCQ example

Weak example:¹

Calculate the indefinite integral $\int \ln(3x) dx$ (A) $\frac{x}{3} (\ln(3x) - 1) + C, C \in \mathbb{R}$ *(B) $x (\ln(3x) - 1) + C, C \in \mathbb{R}$ (C) $3x (\ln(3x) - 1) + C, C \in \mathbb{R}$ (D) $\frac{1}{x} + C, C \in \mathbb{R}$

Fig. 4. Weak example of MC with no homogeneous alternatives

Also a weak example due to content, as options can be differentiated to get back to the question, which is a different learning goal than intended

1:Torres, Lopes, Babo and Azevedo (2009)

Quality Testing - Statistics

Difficulty (P-value)

- The proportion of examinees who selected the correct option.
- A low P-value (p<0.30) indicates a difficult question whilst a high Pvalue indicates an easy question (p>0.80)

Item Discrimination Index

- Item Discrimination Index¹.
- Between -1.0 and +1.0.
- Above 0.30 is considered good.

Distractors

- For it to be a good distractor, at least 5% should choose it².

1:Johnson (1951) 2:DiBattista and Kurzawa (2011)

Pilot at the University of Twente

Item	Max Score	P
1	2	0.62
2	3	0.26
3	2	0.39
4	2	0.60
5	3	0.78
6	6	0.62
7	1	0.82
8	2	0.87
9	3	0.68
10	6	0.65
11a	1	0.78
11b	2	0.63
12	3	0.49

June 2017 Mathematics 1D N = 494 Pass percentage of exam: 72%

Harry Aarts, Steffen Posthuma, Karen Slotman, Bernard Veldkamp, Jan van der Veen, Jan Willem Polderman

Hybrid exam consisting of:

Questions 2, 3, 4, 7, 8 and 11b were multiple choice. Questions 1, 5, 9, 11a and 12 were final answer based. Question 6 and 10 were paper-based hand written.

This table can also be seen in the SUTQ project by Harry Aarts, called: "A Hybrid Test for Mathematics", submitted 5 March 2018. For his analysis on the same data, he can be contacted on <u>h.f.m.aarts@utwente.nl</u> for a copy of the project contains his findings.

Digital Testing Question 11b

11. [3 pt]

Consider the transformation $x = \frac{u}{x}, y = v$ (u > 0, v > 0).

- (a) [1 pt] Determine the Jacobian $J(u,v) = \frac{\partial(x,y)}{\partial(u,v)}$ of this transformation.
- (b) [2 pt] Choose, from the six figures below, the correct sketch of the corresponding image under this transformation of the region in the first quadrant enclosed by the hyperbolas xy = 1 and xy = 4 and the lines y = x and y = 4x.

Choose the image under the transformation enclosed by the hyperbolas xy = 1 and xy = 4 and the lines y = x and y = 4x

y = x	y = 4x
subs: $x = \frac{u}{v} an$	d y = v
$v = \frac{u}{v}$	$v = \frac{4u}{v}$
$v^2 = u$	$v^2 = 4u$
$v = \sqrt{u}$	$v = 2\sqrt{u}$

				ltem
		Upper	lower	Discrimination
Question	P-value	group	Group	Index
11b	0.63	0.90	0.40	0.50

Digital Testing Question 2

2. [3 pt]

Let f(x,y) = f(x(u,v), y(u,v)) and x(u,v) and y(u,v) be differentiable functions.

Use Tables 1 and 2 to determine $\frac{\partial f}{\partial v}(u,v)$ in (u,v) = (1,2).

(x,y)	(0,0)	(1, 2)	(3, 0)
f(x,y)	1	6	-2
$f_x(x,y)$	-1	3	-5
$f_y(x,y)$	-2	8	9

Table 1

(u,v)	(0,0)	(1, 2)	(3, 0)
x(u,v)	-2	3	7
y(u,v)	6	0	3
$x_u(u,v)$	1	2	6
$x_v(u,v)$	0	4	1
$y_u(u,v)$	3	-4	2
$y_v(u,v)$	0	5	-3

Table 2

$$2. \frac{df}{dx} \cdot \frac{dx}{dv} + \frac{df}{dy} \cdot \frac{dy}{dv}$$
$$3. = -5 \times 4 + 9 \times 5$$

$$= -20 + 45$$

= 25

Choose from the alternatives below and fill in your answer on the answer sheet:					Item			
			(26%)			Upper	lower	Discrimination
(a) 21	(b) 91	(c) 0	(d) 25	Question	P-value	group	Group	Index
(a) 31	(b) -21	(c) 0	(d) 25	2	0.26	0.50	0.17	0.33
(e) 58	(f) -32	(g) 52	(h) 26					
		(55%)	(6%)					

Digital Testing Question 3

3. [2 pt]

Consider the function $f(x, y) = xe^{-y} + 3y$ and the point P(1, 0). Determine the unit direction **u** for which $D_{\mathbf{u}}f(P)$ is maximal.

Choose from the alternatives below:

(a)
$$\frac{1}{\sqrt{17}}\mathbf{i} + \frac{4}{\sqrt{17}}\mathbf{j}$$
 (b) $-\mathbf{j}$ (c) $\frac{1}{\sqrt{10}}\mathbf{i} + \frac{3}{\sqrt{10}}\mathbf{j}$ (d) $\mathbf{i} + 2\mathbf{j}$
(e) $\frac{1}{\sqrt{5}}\mathbf{i} + \frac{2}{\sqrt{5}}\mathbf{j}$ (f) \mathbf{i} (g) $\mathbf{i} + 4\mathbf{j}$ (h) \mathbf{j}
(39%) (6%) (16%) (5%) 4. Therefore, $\frac{1}{\sqrt{5}}\mathbf{i} + \frac{2}{\sqrt{5}}\mathbf{j}$

				ltem
		Upper	lower	Discrimination
Question	P-value	group	Group	Index
3	0.39	0.68	0.19	0.49

 $3. u = \sqrt{x^2 + y^2}$

1. $\nabla f(x, y) = (e^{-y}, -xe^{-y} + 3)$

2. $\nabla f(x, y) = (1, 2) at P(1, 0)$

Suggestions towards Framework for Undergraduate Mathematics

From Haladyna et al., 2002.	Undergraduate Mathematics
Content .	I
• Every item should concern one specific mental behaviour -	- \rightarrow Limit the question to testing one concept.
Use novel material to limit simple recall	- \rightarrow A must, to avoid trivial questions ¹
Style .	l
 Minimise the amount of reading in each item . 	
Choices .	I
Research suggests three is adequate	- \rightarrow As many as five distractors can still be effective.
• Make sure none of the choices overlap	- \rightarrow Choices should also not be mathematically equivalent.
Keep choices homogeneous	- \rightarrow Especially in questions regarding graphs.

In addition

- Good distractors that catch very bad misconceptions are key in item difficulty.
- Avoid distractors which are the result of small calculation errors.
- Limit question to 3 4 reasoning procedures, which contain simple arithmetic.

1: Jonassen, 2000

Conclusions

- MCQ can test difficult content.
- With unfamiliar context MCQ increases difficulty.
- With many options, guessing success is reduced.
- With well written distractors, students have to work out their answers in more detail to get to the right answer.

However

Multiple choice is still limited in measuring long-chains of reasoning.

100% digital testing exams for summative assessment might be possible with further research.

References

- Aarts, H.F.M. (2018). A Hybrid Test for Mathematics. *SUTQ Project. Contact:* <u>h.f.m.aarts@utwente.nl</u> for a copy.
- Torres, C., Lopes, A. P., Babo, L., Azevedo, J. (2009). Developing Multiple-Choice Questions in mathematics. In *Proceedings of ICERI* 2009 International Conference of Education, Research and Innovation. pp. 6218–6229.
- DiBattista, D., Kurzawa, L. (2011). Examination of the Quality of Multiple-choice Items on Classroom Tests. *The Canadian Journal* for the Scholarship of Teaching and Learning. 2011, 2(2). doi:http://dx.doi.org/10.5206/cjsotl-rcacea.2011.2.4K.
- Haladyna, Downing, & Rodriguez (2002). A Review of Multiple-Choice Item-Writing Guidelines for Classroom Assessment. Applied measurement in Education, 15(3), 309-334.
- Johnson, A. P. (1951). Notes on a suggested index of item validity: The U-L Index. Journal of Educational Psychology, 42(8), 499-504.
- Jonassen, D. H. (2000). Toward a Design Theory of Problem Solving. Educational Technology Research and Development, 48, 63-85. doi:10.1007/BF02300500
- Nicol, D. (2007). E-assessment by design: using multiple-choice tests to good effect. *Journal of Further and Higher Education*, 31(1), 53–64
- Quaigrain, K., & Arhin, A. K., & King Fai Hui, S. (2017). Using reliability and item analysis to evaluate a teacher-development test in educational measurement and evaluation. *Cogent Education*. 4(1). doi:10.1080/2331186X.2017.1301013.

Q&A