Estimation ability of deep learning with connection to sparse estimation in function space

Taiji Suzuki
The University of Tokyo
AIP-RIKEN
Collaboration with Satoshi Hayakawa, Atsushi Nitanda, Kenta Oono.

5th/Nov/2019
4TU.AMI Meeting on Mathematics of Deep Learning
@TU Delft, Science Centre
Deep learning

- High performance
- Applied to services in several industries: Google Deepmind, Facebook AI Lab., Baidu, ...

• High performance in several applications
• But, theoretical understanding is not satisfactory (Big issue all over the world)

Result of ILSVRC (classification error (%))

Alex-net [Krizhevsky, Sutskever + Hinton, 2012]
Structure of deep NN

Repeat “linear transform” and “nonlinear activation.”

$x \xrightarrow{W_1 x} h_1(W_1x) \xrightarrow{W_2h_1(W_1x)} h_2(W_2h_1(W_1x))$

- $h_1(u) = [h_{11}(u_1), h_{12}(u_2), \ldots, h_{1d}(u_d)]^T$
- \star ReLU (Rectified Linear Unit) :
- Sigmoid function :

$h(u) = \max\{u, 0\}$

$h(u) = \frac{1}{1 + e^{-u}}$
Fully connected layer

- \(\ell \)-th layer

\[\phi_{\ell+1}(x) = \eta(W^{(\ell)} \phi_\ell(x) + b^{(\ell)}) \]

\[W^{(\ell)} \in \mathbb{R}^{m_{\ell+1} \times m_\ell} \quad b^{(\ell)} \in \mathbb{R}^{m_{\ell+1}} \]
Examples of activation functions

- ReLU (Rectified Linear Unit)
 \[\eta(u) = \max\{u, 0\} \]

- Sigmoid function
 \[\eta(u) = \frac{1}{1 + e^{-u}} \]
Universal Approximator

\[f(x) = \sum_{j=1}^{m} v_j \eta(w_j^\top x + b_j) \]

Taking \(m \to \infty \), we can approximate “any function” with “any precision.”

\(\eta \) can be sigmoid or ReLU.

Activation functions:

ReLU: \(\eta(u) = \max\{u, 0\} \)

Sigmoid: \(\eta(u) = \frac{1}{1+\exp(-u)} \)

Adaptivity of deep learning
Deep learning shows good performances in various tasks.

→ “Adaptivity” of deep learning
- Besov space and its variants.
- Deep learning can outperform non-adaptive method and linear estimators.
- Extension of the theory to more general space.

Non-parametric regression

\[y_i = f^\circ(x_i) + \xi_i \quad (i = 1, \ldots, n) \]

where \(\xi_i \sim N(0, \sigma^2) \) and \(x_i \in [0,1]^d \sim P_X(X) \) (i.i.d.).

We estimate \(f^\circ \) from \((x_i, y_i)_{i=1}^n \).

A similar argument can be applied to classification.

Estimation error:

\[\mathbb{E}[\|\hat{f} - f^\circ\|^2_{L^2(P)}] < ? \]
Relation to existing work

Hölder
- [Schmidt-Hieber, 2018]
- [Yarotsky, 2017]
 Deep learning with ReLU activation achieves minimax rate in Hölder space:
 \[n \geq \frac{2s}{2s+d} \]

Besov
- [Yarotsky, 2017]
- [Suzuki, 2019]
 Minimax rate in Besov space:
 \[n \geq \frac{2s}{2s+d} \]
 Kernel method (linear est.):
 \[n \geq \frac{2s - 2d(1/p - 1/2)_+}{2s + d - 2d(1/p - 1/2)_+} \]

Anisotropic Besov
- [Schmidt-Hieber, 2018]: composition of Hölder.
- [Schmidt-Hieber, 2019]
- [Nakada & Imaizumi, 2019]: Low dim structure.

- [Suzuki & Nitanda, 2019]
 Minimax rate:
 \[n \geq \frac{2\bar{s}}{2\bar{s} + 1} \]
 \(\bar{s} := \left(\frac{1}{s_1} + \cdots + \frac{1}{s_d} \right)^{-1} \)
 Kernel method (linear est.):
 \[n \geq \frac{2(s_{\min} - D/p + d/2)}{2(s_{\min} - D/p + d/2) + d} \]
Two quantities

- Smoothness

- Dimensionality

(a) MNIST sample belonging to the digit ‘7’. (b) 100 samples from the MNIST training set.
Smoothness

In machine learning, there appears various types of functions:

- **Bump**
- **Discontinuous**
- **Uniformly smooth**

Difficult

If we overly adapt to bump, the model becomes unnecessarily large. \rightarrow overfitting.

If we adapt to smooth part, bump can not be estimated. \rightarrow underfitting.

"Adaptivity" is important

Theorem

Deep learning can achieve the *minimax optimal rate* to estimate functions in the **Besov space** ($B_{p,q}^s$).

(DL can adaptively estimate various types of functions.)
Convergence rate comparison (smoothness)

Linear estimator (shallow method)

\[\hat{f}(x) = K_{x,X} (K_{X,X} + \lambda I)^{-1} Y \]

\[n \leq \frac{2s - 2(1/p - 1/2)_+}{2s + 1 - 2(1/p - 1/2)_+} \]

Sub-optimal

Deep learning

\[n \geq \frac{2s}{2s + 1} \]

Optimal

\(n: \) sample size, \(p: \) uniformity of smoothness, \(s: \) smoothness

Linear method (e.g., kernel method)

Deep learning
Dimensionality

• High dimensional data
 → Curse of dimensionality

Low dimensionality of the true function:
• The true function can be very smooth (constant) in several directions.
• Data is usually distributed on a low-dimensional sub-manifold.

The estimator should find in which direction the true function is smooth.

Theorem
Deep learning is minimax-optimal also in the anisotropic Besov space.
Convergence rate comparison (dimensionality)

Linear estimator (shallow method)
Deep learning

\[
\hat{n} \sim \frac{2(s_{\text{min}} - D/p + d/2)}{2(s_{\text{min}} - D/p + d/2) + d} \quad \gg \quad \hat{n} \sim \frac{2\hat{s}}{2\hat{s} + 1}
\]

Sub-optimal
Optimal
\[\hat{s} := \left(\frac{1}{s_1} + \cdots + \frac{1}{s_d}\right)^{-1}\]

(\hat{n}: sample size, \(s\): smoothness)

Linear estimator can not find smooth directions.
(lack of feature extraction ability)
Hölder, Sobolev, Besov space

\[\Omega = [0, 1]^d \subset \mathbb{R}^d \]

- **Hölder space** \((C^\beta(\Omega)) \)

\[\| f \|_{C^\beta} = \max_{|\alpha| \leq m} \| \partial^\alpha f \|_\infty + \max_{|\alpha| = m} \sup_{x \in \Omega} \frac{|\partial^\alpha f(x) - \partial^\alpha f(y)|}{|x - y|^{\beta - m}} \]

- **Sobolev space** \((W^k_p(\Omega)) \)

\[\| f \|_{W^k_p} = \left(\sum_{|\alpha| \leq k} \| D^\alpha f \|_{L^p(\Omega)}^p \right)^{1/p} \]

- **Besov space** \((B^s_{p,q}(\Omega)) \) \((0 < p, q \leq \infty, 0 < s \leq m) \)

\[\omega_m(f, t)_p := \sup_{\|h\| \leq t} \left\| \sum_{j=0}^m (-1)^{m-j} \binom{m}{j} f(\cdot + jh) \right\|_{L^p(\Omega)} \]

\[\| f \|_{B^s_{p,q}(\Omega)} = \| f \|_{L^p(\Omega)} + \left(\int_0^\infty \left[t^{-s} \omega_m(f, t)_p \right]^q \frac{dt}{t} \right)^{1/q} \]

Spatial homogeneity of smoothness

Smoothness
Relation between the spaces

- For $m \in \mathbb{N}$,

\[
B_{p,1}^m \leftrightarrow W_p^m \leftrightarrow B_{p,\infty}^m,
\]

\[
B_{2,2}^m = W_2^m.
\]

- For $0 < s < \infty$ and $s \notin \mathbb{N}$,

\[
C^s = B_{\infty,\infty}^s.
\]
• Continuous regime: \(s > d/p \)

\[
B_{p,q}^s \hookrightarrow C^0
\]

• \(L^r \)-integrability: \(s \geq d(1/p - 1/r)_+ \)

\[
B_{p,q}^s \hookrightarrow L^r
\]

- \(B_{1,1}^1([0,1]) \subset \{ \text{bounded total variation} \} \subset B_{1,\infty}^1([0,1]) \)
• Discontinuity: $d/p > s$

• Spatial inhomogeneity of smoothness: small p

![Diagram showing a transition from rough to smooth with a notation $d/p > s$]
Sparse coefficients → spatial inhomogeneity of smoothness (non-convexity)
Deep learning model

\[f(x) = (W^{(L)}\eta(\cdot) + b^{(L)}) \circ (W^{(L-1)}\eta(\cdot) + b^{(L-1)}) \circ \cdots \circ (W^{(1)}x + b^{(1)}) \]

\[\mathcal{F}(L, W, S, B) \]

- Depth: \(L \)
- Width: \(W \)
- Sparsity: \(S \)
- Norm bound: \(B \)

- Activation function is ReLU

\[\eta(x) = \max\{x, 0\} \]
Approximation in Besov space

- Assume $0 < p, q, r \leq \infty$, $0 < s < \infty$, and following condition:
 \[s > d(1/p - 1/r)_+ \]
 \((L^r \text{-integrable}) \)

- m is an integer s.t. $s < \min\{m, m - 1 + 1/p\}$.

Approximation ability of deep neural network

For an integer N, let depth L, width W, sparsity S, norm bound B be

\[
L = O(\log(N)), \quad W = O(N), \quad S = O(N \log(N)), \quad B = O(N^{(d/p-s)_+}).
\]

Then, deep NN can approximate elements in Besov space as

\[
\sup_{f^0 \in U(B^s_{p,q}([0,1]^d))} \inf_{\tilde{f} \in F(L,W,S,B)} \| f^0 - \tilde{f} \|_{L^r([0,1]^d)} \lesssim N^{-s/d}.
\]

Pinkus (1999), Mhaskar (1996): $p = r$ and $1 \leq p$, ReLU activation is excluded.
Petrushev (1998): $p = r = 2$, ReLU is excluded ($s \leq k + 1 + (d - 1)/2$).
Under the condition $s > d(1/p - 1/r)_+$, we have

$$\sup_{f^o \in \mathcal{U}(B^s_{p,q}([0,1]^d))} \inf_{\tilde{f} \in \mathcal{F}(L,W,S,B)} \| f^o - \tilde{f} \|_{L^r([0,1]^d)} \lesssim N^{-s/d}.$$

- For $p = q = \infty$, it is reduced to Yarotsky (2016) (Hölder space)

- **Adaptive nonlinear** approx. must be used (Dung, 2011)

Linear approx. (Linear width):

\[
\begin{cases}
N^{-s/d + \frac{1}{p-1/r} +} \\
N^{-s/d + \frac{1}{p-1/2}}
\end{cases}
\begin{aligned}
&
\left\{ \begin{array}{ll}
& \text{either} \quad (0 < p \leq r \leq 2), \\
& \text{or} \quad (2 \leq p \leq r \leq \infty), \\
& \text{or} \quad (0 < r \leq p \leq \infty),
\end{array} \right.
\end{aligned}
\]

Non-adaptive approx. (N-term approx., Kolmogorov width):

\[
\begin{cases}
N^{-s/d + \frac{1}{p-1/r} +} \\
N^{-s/d + \frac{1}{p-1/2}} \\
N^{-s/d}
\end{cases}
\begin{aligned}
&
\left\{ \begin{array}{ll}
& (1 < p < 2 < r \leq \infty, \; s > d/p), \\
& (2 \leq p < r \leq \infty, \; s > d/2),
\end{array} \right.
\end{aligned}
\]

- **Adaptivity of deep NN**
- **Good feature extractor**

This difference does not appear for Hölder space
Chui et al. (1994) and Bölcskei et al. (2017) dealt with a “smooth” activation with $\lim_{x \to \infty} \eta(x)/x^k \to 1$, $\lim_{x \to -\infty} \eta(x)/x^k = 0$ with $k \geq 2$ under $1 \leq p$. Mhaskar and Micchelli (1992) studied $s = k + 1$. Mhaskar (1993) studied $k \geq 2$ and $s = k + 1$. Mhaskar (1996) considered the Sobolev space W^m_p with a “bump” activation function (excluding ReLU).
Estimation error analysis

- Least squares estimator

\[\hat{f} = \arg \min_{\bar{f} : \bar{f} \in \mathcal{F}(L,W,S,B)} \sum_{i=1}^{n} (y_i - \bar{f}(x_i))^2 \]

where \(\bar{f} = \min\{\max\{f, -F\}, F\} \) (clipping).

Theorem (estimation error)

Suppose \(\|f^0\|_{B_{p,q}^s} \leq 1, \|f^0\|_{\infty} \leq 1 \) and \(0 < p, q \leq \infty, s > d(1/p - 1/2)_+ \). Then, by setting \(N \asymp n^{\frac{d}{2s+d}} \), we have

\[\mathbb{E}[\|f^0 - \hat{f}\|_{L^2(P_X)}^2] \leq n^{-\frac{2s}{2s+d}} \log(n)^3. \]

For \(p = q = \infty \), it is reduced to Schmidt-Hieber (2017).
Linear estimator: an estimator which is linear to $(y_i)_{i=1}^n$.

“Shallow” method

\[X_n = (x_1, \ldots, x_n) \]

\[\hat{f}(x) = \sum_{i=1}^{n} \varphi(x; X_n)y_i \]

Examples

- Kernel ridge estimator
- Sieve estimator
- Nadaraya-Watson estimator
- k-NN estimator

Kernel ridge regression:

\[\hat{f}(x) = K_{x,X}(K_{X,X} + \lambda I)^{-1}Y \]
Comparison to other methods

• Linear estimators
 (Donoho & Johnstone, 1994)
 (Kernel ridge estimator, Sieve estimator, Nadaraya-Watson, ...)

\[n \leq \frac{2s - 2d(1/p - 1/2)}{2s + d - 2d(1/p - 1/2)} \]

• Deep learning

\[n \leq \frac{2s}{2s + d} \]

There appears difference when \(p < 2 \)

When \(p \) is small \((p<2)\), deep learning dominates
→ Spatial inhomogeneity of smoothness
 (adaptivity to produce appropriate bases)

Difference between deep and sparse learning:

- **Sparse:** Choose important bases from a pre-specified set of bases.
- **Deep:** Construct bases directly.
Why does this difference happen?

With additional conditions, it can be extended to “Q-hull.”

Simple example

[Hayakawa & Suzuki: 2019]

\[J_K = \left\{ a_0 + \sum_{i=1}^{K} a_i 1_{[t_i,1]} \mid t_i \in (0, 1], |a_0|, \sum_{i=1}^{K} |a_i| \leq 1 \right\} \]

→ Its convex hull includes the functions of bounded variation.

\[\inf_{\hat{f} : \text{Linear}} \sup_{f^0 \in J_K} \mathbb{E} \left[\| \hat{f} - f^0 \|_{L_2(P)}^2 \right] \geq \Omega \left(\frac{1}{\sqrt{n}} \right). \]

Deep learning: \(o \left(\frac{1}{n} \right) \)
Examples (1)

- **Piece-wise smooth function** (Imaizumi & Fukumizu, 2018)

\[
f^\circ(x) = \sum_{k=1}^{K} 1_{R_k}(x)h_k(x)
\]

where \(R_k \) is a region with smooth boundary and \(h_k \) is a smooth function.

➢ Deep is better than a kernel method (linear estimator).

- **Low dimensional feature extractor** (Schmidt-Hieber, 2018)

\[
f^\circ(x) = g(w^\top x)
\]

\(g \) is a univariate smooth function.

\[
n \frac{2s}{2s+1} \ll n \frac{2s}{2s+d}
\]

Deep \hspace{1cm} Wavelet series estimator

: suffers from curse of dim.
Example (2)

• Reduced rank regression

\[Y_i = U V X_i + \xi_i \quad (i = 1, \ldots, n) \]

where \(Y_i \in \mathbb{R}^M, X_i \in \mathbb{R}^N \) and \(U \in \mathbb{R}^{M \times r}, V \in \mathbb{R}^{r \times N} \) \((r \ll M, N)\).

- Linear estimator \(\hat{f}(x) = \sum_{i=1}^{n} Y_i \varphi(X_1, \ldots, X_n, x) \),
- Deep learning \(\hat{f}(x) = \hat{U} \hat{V} x \).

Comparison of accuracy

\[
\frac{r(M + N)}{n} \ll \frac{MN}{n}
\]

Deep (LS, Ridge reg)

Shallow

Convex hull of the low rank model is full-rank.
Curse of dimensionality
Curse of dimensionality

Estimation error bound:

\[n \sim \frac{2s}{2s+d} \]

Approximation error bound:

\[N \sim \frac{s}{d} \]

→ Curse of dimensionality
Anisotropic Besov space

\[f^\circ \in B_p^{(s_1, \ldots, s_d)} \quad \bar{s} := \left(\frac{1}{s_1} + \cdots + \frac{1}{s_d} \right)^{-1} \]

\[\mathcal{N} \sim \frac{2\bar{s}}{2\bar{s}+1} \]

- Curse of dimensionality is avoided.
- Minimax optimal.

[Ibragimov & Khas’minskii (1984), Nyssbaum (1983, 1987), Kerkyacharian et al. (2001)]
Deep composition model

\[f^\circ (x) = h_H \circ \cdots \circ h_1(x) \]

\(h_\ell : \mathbb{R}^{m_\ell} \rightarrow \mathbb{R}^{m_{\ell+1}} \) : included in an anisotropic Besov space \((B_{p,q}^{\beta(\ell)}) \).

Example:

\[f^\circ (x) = h \circ \varphi(x) \]

Coordinate in the manifold (feature extractor)

Theorem

\[
E[\| \hat{f} - f^\circ \|_{L^2(P_X)}^2] \lesssim \max_{\ell \in [H]} n \left(\frac{2 \beta^*(\ell)}{2 \beta^*(\ell) + 1} \right) \log(n)^3
\]

Deep learning

\[\tilde{\beta}(\ell) := \left(\frac{1}{\beta_1(\ell)} + \cdots + \frac{1}{\beta_{m_\ell}(\ell)} \right)^{-1} \]

\[\beta^*(\ell) := \tilde{\beta}(\ell) \prod_{k=\ell+1}^{H} \left(\min_j \beta_j^{(\ell)} - 1/p \right) \land 1 \]

This is minimax optimal.
Data on smooth manifold

- The true function varies only one direction in the manifold.
- Invariant against noise injection to other directions.

Intrinsic dimensionality: \(d = 1 \)

Naïve evaluation: \(n \frac{2s}{2s+d} \)

c.f., Manifold regression:
Comparison to linear estimator

\[f^\circ(x) = g(Wx) \quad (W \in \mathbb{R}^{D \times d}, \ g \in B_p^s([0, 1]^D)) \]

\[f^\circ \] depends only \(D \)-dimensional subspace.

Deep

\[
\mathcal{O}(\frac{2s}{2s + D})
\]

(\(\mathcal{O}(\frac{2s}{2s + d/2}) \) when \(D = \frac{d}{2} \))

Linear estimator

\[
\mathcal{O}(\frac{2(s - D/p + d/2)}{2(s - D/p + d/2) + d}) \lor \mathcal{O}(\frac{2s}{2s + D})
\]

(\(\mathcal{O}(\frac{2s}{2s + d}) \) when \(D = \frac{d}{2} \) and \(p = 1 \))

Deep can ease curse of dim., but linear estimators directly suffers from curse of dim.
Adaptivity of deep learning

• The ReLU-DNN has high adaptivity to shape of the target functions (spatial inhomogeneity of smoothness).

\[\| \hat{f} - f^\circ \|_{L^2(P)}^2 = O\left(n^{-2s/(2s+d)} \log(n)^3 \right) \]

• DNN outperforms non-adaptive methods.

[DNN] \(n^{-\frac{2s}{2s+d}} \ll n^{-\frac{2(s-d(1/p-1/2))}{2s+d-2d(1/p-1/2)}} \) (linear method)

[Anisotropic Besov] \(n^{-\frac{2s}{2\tilde{s}+1}} \ll n^{-\frac{2s_{\min}}{2s_{\min}+d}} \) (linear method)

Deep learning \(\approx \) Sparse estimation in infinite dim. space