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What is this talk about?

| want to do deep learning

| want to be Bayesian

| don’t want to place priors on a million parameters
| want to work with “big data”

(I want to do cool mathematics)

What should | do?



Motivation

Parameters - Weights

* Deep neural networks excel at various
predictive tasks

* But for decision making you also need
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Original image from: http://scyfer.nl/wp-content/uploads/2014/05/Deep Neural Network.png



http://scyfer.nl/wp-content/uploads/2014/05/Deep_Neural_Network.png

Bayesian Neural Networks (BNNs)

-  True function
- Mean function
® Observations

Allows neural networks to estimate uncertaint A
Problem 1: what is an appropriate JProblem 2: Inference over millions of

‘ choice of p(w)? p dimensions”?

* Summarize the uncertainty in the posterior
distribution over w

Hoed
o

b "y
o ]
TR ?;‘\"l
) ;I e
RO

o%o

p(WITIL p(yilx;, W)
J p (WL p(y;i|x;, w)dw

p(w‘xl:Ni Y1:N) —




Stochastic Processes
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Can we bypass these limitations?
Posit a prior over functions directly, rather than
going through weights: stochastic process.

* Gaussian Processes is a prime example of
stochastic processes

Function




(Gaussian Processes (GPs)

- True function ® Observations
- Mean function

o Al pd

Problem 2: GPs scale, in general,
flexible as neural nets for high g cubically w.r.t. the size of the dataset
dimensional tasks @[] e[ ]

* GPs posit priors over functions: similar

Problem 1: (vanilla) GPs are not as

 Inference is exact



Combining the best of both worlds

* Can we parametrize stochastic processes that bypass the limitations of GPs?

* Yes! We only need to satisfy two necessary conditions (the Kolmogorov extention theorem)

1. Exchangeability:
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2. Consistency:




De Finetti's Theorem

(cool maths)

Theorem 2 (De Finetti, 1930s). A sequence of random variables (x1,x2,...) is infinitely exchangeable iff,
for all n,

(Source: Tamara Broderick)

p(T1,x2,...,2,) = /Hp(a:?;|9)P(d9),

for some measure P on 0.

Non-parametric Bayesian modeling
Bayesian modeling



ldea: Model Relational Structure

« Exchangeable joint model over all data cases
* Organize data in a directed acyclic graph

* Predictions depend on parents in this graph



Building the Model

Let D = {(xi, yi)}i=1:n be our training dataset
and Dx = {xi}i=1:N the training inputs

Adopt a ‘reference’ set of input points R = {r1, ..., rn}
(similar to the ‘inducing inputs’ frequently used in GPs)

We infer a DAG over R

Data in D, \ R are leaf nodes of DAG

Venn diagram. R is not
necessarily a subset of Dy, but for
simplicity we will assume that it is.




Building the Model: Overview
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Reference points

NN embedding

Other trn/tst points

Simple predictor

Reference points Other trn/tst points



Generalized Graphons

p(G,A|U)
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Dashed: G
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Constructing a graph of dependencies among the points

in U space

p(AlU) = ]

[1 Bern(g(u;, u;))
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p(GIU) =[] [ Bern(l[t(uy) > ’{(“j)Jg(“i»“j))

Topological ordering

t(u;) = YlogCDFNormal(u;y,)
k



Optimizing the model: Variational inference

Maximize the following ELBO to the marginal likelihood of D w.r.t. © and variational parameters ¢

In general, no (unbiased)

minibatching &)
Ly =

R Allows for unbiased minibatching!
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* Where we assumed that: d$(Up, G, A, Zp|Xp,yp) = pe(Up|Xp)p(G|Ug)p(A|Up)qe(Zp|Xp)
qp(Zp|Xp) = 1;[61¢(Zi\xi)



Example graphs of dependencies

Examples of the bipartite graph A that the FNP learns. The first column of each image
IS a query point and the rest are the five most probable parents from the reference set
R. We can see that the FNP associates same class inputs.



Example graphs of dependencies

A DAG over R on MNIST, obtained after propagating the means of U and thresholding
edges that have less than 0.5 probability in G. We can see that FNP learns a
meaningful G by connecting points that have the same class.



Inductive biases In toy regression
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Punchline

Functional Priors are more intuitive and can still be scalable
for both supervised and unsupervised learning.
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