
Randomized Model Order Reduction

Kathrin Smetana (University of Twente)
joint work with

A. Buhr (University of Münster), A. T. Patera (MIT),
and O. Zahm (INRIA)

June 8, 2018

4TU-AMI Symposium “Reducing dimensions in Big Data:
Model Order Reduction in action”

K Smetana (k.smetana@utwente.nl) Randomized Model Order Reduction June 8, 2018 1 / 38



Data and Model Order Reduction

K Smetana (k.smetana@utwente.nl) Randomized Model Order Reduction June 8, 2018 2 / 38



Motivation/Outline

§ Motivation: Randomized methods have got a steadily growing deal of
attention in recent years, especially for problems in large-scale data
analysis.
Two most important benefits:

They can result in faster algorithms, either in worst-case asymptotic
theory and/or numerical implementation,
they allow very often for (novel) tight error estimators

§ Topic of this talk: Show how we can benefit from randomized
methods in model order reduction

§ Outline:
1 Introduction to projection-based model order reduction
2 Construct reduced spaces via randomized methods
3 Randomized a posteriori error estimator for projection-based model

reduction
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Projection-based model order reduction

Parametrized Partial Differential Equation

§ Parameter vector µ P P; compact parameter set P Ă RP

§ Parametrized PDE: Given any µ P P, find upµq P X , s.th.

Apµqupµq “ f pµq in X 1.

§ Ω Ă R3: bounded domain with Lipschitz boundary BΩ

§ H1
0 pΩq

d Ă X Ă H1pΩqd (d “ 1, 2, 3); X 1: dual space
§ Apµq : X Ñ X 1: inf-sup stable, continuous linear differential operator
§ f pµq : X Ñ R: continuous linear form
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Apµqupµq “ f pµq in X 1.

§ High-dimensional discretization:
§ Introduce high-dimensional FE space XN Ă X with dimpXN q “ N
(assume small discretization error)

§ High-dimensional approximation: Given any µ P P, find uN pµq P XN ,
s.th.

ApµquN pµq “ f pµq in XN 1

.

§ Issue: Require uN pµq in real time and/or for many µ P P.
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Projection-based model order reduction

Projection-based model order reduction: key concept

§ Exploit: uN pµq belongs to “solution
manifold”MN “ tuN pµq |µ P Pu Ă XN of
typically very low dimension

§ Offline: Construct reduced space XN Ă XN

from solutions uN pµ̄i q, i “ 1, ...,N
(e.g. by a Greedy algorithm, Proper
Orthogonal Decomposition,...)

§ Online: Galerkin projection on XN : Given any µ˚ P P, find uNpµ˚q P XN ,
s.th.

Apµ˚quNpµ˚q “ f pµ˚q in XN1.

§ If MN is smooth, N ! N already yields a very accurate approximation.
([DeVore Petrova Wojtaszczyk 13])

For an overview on model order reduction see for instance [Benner, Cohen,
Ohlberger, Willcox 2017].
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Projection-based model order reduction

Proper Orthogonal Decomposition via SVD

§ Introduce finite dimensional training set Ptrain Ă P of dimension ntrain

§ Compute solutions uN pµq for all µ P Ptrain

§ Store coefficients in a so-called snapshot matrix:
Y “ ruN pµ1q| . . . |u

N pµntrainqs

§ Perform Singular Value decomposition: Y “ UΣV ˚

§ Use first N left singular vectors to define reduced space
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Projection-based model order reduction

Algorithm 1: Greedy algorithm
input : finite dimensional training set P train

Ă P, tolerance tol
output: SN , XN

Initialize: S1 “ H, X 0
“ t0u, ∆0pµq “ }u

N
pµq}X

for N “ 1 : Nmax do

Find: µN “ arg max
µPPtrain

∆N´1pµq. p}uN
pµq ´ uN

pµq}X ď ∆Npµqq

Solve for uN
pµNq.

Extend: SN “ SN´1 Y µN and XN
“ spantuN

pµ1q, . . . , u
N
pµNqu.

Compute ∆Npµq for all µ P P train.

if arg max
µPPtrain

∆Npµq ď tol then

break
end

end
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Projection-based model order reduction

Certification via a posteriori error bound

§ A posteriori error estimator is important both
to construct reduced order models via the greedy
certify the approximation in the online stage: how large is the error (in
some quantity of interest)?

Proposition (A posteriori error bound)

The error estimator ∆Npµq “ βLBpµq
´1}f pµq ´ ApµquNpµq}XN 1 with

βLBpµq ď βN pµq satisfies

}uN pµq ´ uNpµq}X ď ∆Npµq ď
γN pµq

βLBpµq
}uN pµq ´ uNpµq}X ,

where βN pµq :“ inf
vPXN

sup
wPXN

xApµqv ,wy
}v}X }w}X

and γN pµq “ sup
vPXN

sup
wPXN

xApµqv ,wy
}v}X }w}X

.

§ Problem: Good estimate of inf-sup often computationally infeasible
Ñ constant-free randomized error estimators
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Construct reduced order models via randomized methods

Constructing reduced order models via methods from
randomized numerical linear algebra

For an overview on algorithms in randomized numerical linear algebra see
for instance: [Halko et al 2011], [Mahoney 2011], [Drineas, Mahoney, 2016]
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Construct reduced order models via randomized methods randomized SVD

Randomized SVD

§ Goal: Given a snapshot matrix Y P RNˆntrain and an integer k find an
orthonormal matrix Q of rank k such that Y « QQ˚Y .

§ Approach:
§ Draw k random vectors rj P Rntrain (say standard Gaussian)
§ Form sample vectors sj “ Yrj P RN j “ 1, . . . , k .
§ Orthonormalize sj ÝÑ qj , “ 1, . . . , k and define Q “ rq1, . . . , qk s

§ Result: If Y has exactly rank k then qj , “ 1, . . . , k span the range of
Y at probability 1. But also in the general case qj , “ 1, . . . , k often
perform nearly as good as the k leading left singular vectors of Y

§ Compute randomized SVD:
§ Form C “ Q˚Y which yields Y « QC

§ Compute SVD of of the small matrix C “ rUΣV ˚ and set U “ Q rU

References in MOR: Hochman et al 2014, Alla, Kutz 2015, Balabanov,
Nouy 2018
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Construct reduced order models via randomized methods Localized model order reduction

Reduced order modelling for large-scale problems

Limitations of standard model order reduction approach:
§ Curse of parameter dimensionality: many parameters require
prohibitively large reduced spaces

§ No topological flexibility (although geometric variation is possible)
§ Possibly high computational costs in the offline stage

ÝÑ Localized model order reduction
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Construct reduced order models via randomized methods Localized model order reduction

Domain decomposition and oversampling

For each small subdomain ωi (e.g. ω816, yellow)
we introduce an oversampling domain ω˚i (e.g. ω˚816, green)
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Construct reduced order models via randomized methods Localized model order reduction

Constructing local reduced models via a transfer operator

Introduce transfer operators Ti :

§ ... acts on the space of local
solutions of the PDE and maps
values ζ on Bω˚i to ωi

§ ... by solving the PDE locally with
Dirichlet boundary values ζ

§ ... and restricting the local solution
to ωi
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Construct reduced order models via randomized methods Localized model order reduction

Constructing optimal local spaces via transfer operators

§ Key observation: Global solution u satisfies u|ωi “ Ti pu|Bω˚i
q

ùñ Construct local reduced spaces that approximate rangepTi q

§ φj : the left singular vectors of Ti ; σj : singular values of Ti

§ The reduced space

Ropt,n
i :“ spantφ1, . . . , φnu

is the optimal space and minimizes the approximation error among all
spaces of the same dimension

§ The error satisfies:

}Ti ´ PRopt,n
i

Ti} “ σn`1, PRopt,n
i

: orthogonal projection on Ropt,n
i

References: Babuska, Lipton, MMS, 2011; Smetana, Patera, SISC, 2016
K Smetana (k.smetana@utwente.nl) Randomized Model Order Reduction June 8, 2018 14 / 38



Construct reduced order models via randomized methods Construct local spaces via randomized methods

Approximating optimal local spaces with Randomized Linear Algebra

§ Prescribe random boundary conditions; in detail choose every
coeffcient of a FEM basis function on Bω˚i as a (mutually inde-
pendent) Gaussion random variable with zero mean and variance one

§ Solve PDE for random boundary conditions numerically and store
evaluation of local solution of PDE u|ωi .

§ Define reduced space Rn
i ,rand as the span of n such evaluations u|ωi .

References: Buhr, Smetana, SISC, 2018
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Approximating optimal local spaces with Randomized Linear Algebra

§ Prescribe random boundary conditions; in detail choose every
coeffcient of a FEM basis function on Bω˚i as a (mutually inde-
pendent) Gaussion random variable with zero mean and variance one

§ Solve PDE for random boundary conditions numerically and store
evaluation of local solution of PDE u|ωi .

§ Define reduced space Rn
i ,rand as the span of n such evaluations u|ωi .

Questions: What is the quality of such an approximation?
(How) can we determine the dimension of the reduced space for a given

tolerance?

References: Buhr, Smetana, SISC, 2018
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Construct reduced order models via randomized methods Probabilistic a priori error bound

Probalistic a priori error bound1

Proposition (A priori error bound (Buhr, Smetana 18))

T : S Ñ R transfer operator as above, p oversampling parameter, n, p ě 2

E}Ti ´ PRn`p
i,rand

Ti}ď

g

f

f

e

λ
MR
max

λ
MR
min

λ
MS
max

λ
MS
min

$

&

%

ˆ

1`
?
n

?
p ´ 1

˙

σn`1`
e
?
n`p

p

˜

ÿ

jąn

σ2j

¸1{2
,

.

-

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

sdf ; alsjfdlsljksdfasasfd ; asdjfl ; asfjd„ c
?

nσn`1

Optimal convergence rate achieved via SVD:

}Ti ´ PRopt,n
i

Ti} “ σn`1 MR ,MS : inner product matrices in range (ωi ) and source (Bω˚i )

1based on results in [Halko, Martinsson, Tropp 11]
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Construct reduced order models via randomized methods Adaptive randomized range finder algorithm

Probablistic a posteriori error bound2

Proposition (Probablistic a posteriori error bound (Buhr, Smetana 2018))

tr pjq : j “ 1, 2, ..., ntu: standard Gaussian vectors

Define ∆pnt , δtfq :“
cestpnt , δtfq
b

λ
MS
min

max
jP1,...,nt

´

}Ti r
pjq
´ PRn

i,rand
Ti r

pjq
}

¯

Then there holds

}Ti ´ PRn
i,rand

Ti} ď ∆pnt , δtfq ď

˜

λ
MS
max

λ
MS
min

¸1{2

ceffpnt , δtfq}Ti ´ PRn
i,rand

Ti}

with a probability of at least 1´ δtf .

2Estimator extends results in [Halko, Martinsson, Tropp 11]; effectivity bound new
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Construct reduced order models via randomized methods Adaptive randomized range finder algorithm

Adaptive randomized range finder

§ Input: Select tolerance tol , failure probability δalgofail
§ While ∆pnt , δtf q ą tol

Generate random boundary values on Bω˚i
Apply transfer operator Ti to random boundary conditions
Add new solution to Rn

i,rand

Orthonormalize solutions
Update a posteriori error estimator

§ Output: Rn
i ,rand such that }Ti ´ PRn

i,rand
Ti} ď tol with probability at

least 1´ δalgofail
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Construct reduced order models via randomized methods Numerical experiments

Numerical Experiments for analytic test problem

Numerical Experiments: interfaces

§ local (oversampling) domain ω˚ :“ p´1, 1q ˆ p0, 1q
§ Consider PDE: ´∆u “ 0 in ω˚

§ Goal: Construct reduced space on interface Γin

Figure: ω˚
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Construct reduced order models via randomized methods Numerical experiments

Heat conduction: ´∆u “ 0 on ω˚ “ p´1, 1q ˆ p0, 1q

0 0.5 1
´2
´1
0
1
2

x2

0 0.5 1
´2
´1
0
1
2

x2

1
2
3
4
5

Figure: with optimal basis the generated basis generated by randomized range
sfklasfdjaslf;lasfjals;fjas;lf;alsfalfjsdlfjioewjfsdlfjsdlfsf finder algorithm
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Construct reduced order models via randomized methods Numerical experiments

Heat conduction: ´∆u “ 0 on ω˚ “ p´1, 1q ˆ p0, 1q

0 2 4 6 8 10 12

100

10´5

10´10

10´15

basis size n

}
T
i
´

P
R

n i,
ra
n
d
T
i}

max
75 percentile
50 percentile
25 percentile

min
σn`1
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Construct reduced order models via randomized methods Numerical experiments

Heat conduction: ´∆u “ 0 on ω˚ “ p´1, 1q ˆ p0, 8q

CPU times

Properties of basis generation
randomized Scipy/ARPACK

(resulting) basis size n 39 39
operator evaluations 59 79

adjoint operator evaluations 0 79
execution time in s (without factorization) 20.4 s 47.9 s

Table: CPU times; Target accuracy tol“ 10´4, number of testvectors nt “ 20,
failure probability δalgofail “ 10´15; unknowns of corresponding problem 638,799
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Construct reduced order models via randomized methods Numerical experiments

Numerical Experiments for a transfer operator with slowly
decaying singular values

Numerical Experiments: subdomains
§ local (oversampling) domain ω˚ :“ p´2, 2q ˆ p´0.25, 0.25q ˆ p´2, 2q
§ Consider PDE: linear elasticity in ω˚ (isotropic, homogeneous)
§ Goal: Construct reduced space on
ω “ p´0.5, 0.5q ˆ p´0.25, 0.25q ˆ p´0.5, 0.5q

Figure: ω˚zω
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Construct reduced order models via randomized methods Numerical experiments

Linear elasticity on Ω :“ p´2, 2q ˆ p´0.5, 0.5q ˆ p´2, 2q

104 100 10´4 10´8

100

10´3

10´6

10´9

target accuracy tol

}
T
´

P
R
n ra
n
d
T
}

0 100 200 300100

101

102

103

n
∆
{
}
T
´

P
R
n ra
n
d
T
} nt “ 5

nt “ 10
nt “ 20
nt “ 40
nt “ 80

Figure: Convergence behavior of adaptive algorithm (left) and effectivity of a
posteriori error estimator ∆{}T ´ PRn

rand
T } (right) for increasing number of test

vectors nt .
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Construct reduced order models via randomized methods Numerical experiments

Olimex A64

§ 1.2 GHz quad-core ARM CPU
§ 1 GB of RAM
§ open hardware
§ designed with KiCAD

Results by Andreas Buhr
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Construct reduced order models via randomized methods Numerical experiments

Domain 816
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Construct reduced order models via randomized methods Numerical experiments

Decay of Singular Values for T816
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Construct reduced order models via randomized methods Numerical experiments

Error Estimator Decay
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Construct reduced order models via randomized methods Numerical experiments

Error Estimator Decay
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Randomized a posteriori error estimation

Randomized residual-based error estimators for
parametrized equations

(joint work with A. T. Patera and O. Zahm)

Randomization within error estimation:
§ Cao, Petzold 2004, Homescu, Petzold, Serban 2005
§ Drohmann, Carlberg 2015, Trehan, Carlberg, and Durlofsky 2017
§ Manzoni, Pagani, Lassila 2016
§ Janon, Nodet, Prieur 2016
§ Zahm, Nouy 2016
§ Giraldi, Nouy 2017
§ Balabanov, Nouy 2018
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Randomized a posteriori error estimation

§ Goal: Develop a posteriori error estimator for projection-based model
order reduction that does not contain constants whose estimation is
expensive (inf-sup constant)

§ Setting: We query a finite number of parameters in the online stage
for which we want to estimate the approximation error.

§ Approach: Exploit concentration inequalities:

Proposition (Concentration inequality, Johnson-Lindenstrauss)

Choose rows of matrix Φ P RKˆN say as K independent copies of standard
Gaussian random vectors scaled by 1{

?
K and let S Ă RN be a finite set.

Moreover, assume K ě pC pzq{ε2q logp#S{δq. Then we have

P
 

p1´ εq}x ´ y}22 ď }Φx ´ Φy}22 ď p1` εq}x ´ y}22 @x , y P S
(

ě 1´ δ.

see for instance [Boucheron, Lugosi, Massart 2012], [Vershynin 2012],
[Vershynin 2018]
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Randomized a posteriori error estimation Norm estimate

Assumptions on random vector

§ Z P RN : random vector such that

}v}2Σ “ vTΣv “ EppZT vq2q @v P RN ,

where Σ is matrix e.g. associated with H1- or L2-inner product or a
quantity of interest

ùñ pZT vq2 is an unbiased estimator of }v}2Σ

§ For simplicity: Assume Z „ N p0,Σq is a Gaussian vector with zero
mean and covariance matrix Σ

§ Z1, . . . ,ZK : K independent copies of Z

§ Consider the following (unbiased) Monte-Carlo estimator of }v}2Σ

1
K

K
ÿ

i“1

pZT
i vq2.
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality for set of vectors)

Given a finite set of parameters S “ tµ1, . . . , µSu Ă P, a failure probability
0 ă δ ă 1, w P R, w ą

?
e, we have for epµjq “ uN pµjq ´ uNpµjq,

K ě
logp#Sq ` logpδ´1q

logpw{
?

eq
that

P

#

}epµjq}
2
Σ

w2 ď
1
K

K
ÿ

i“1

pZT
i epµjqq

2 ď w2}epµjq}
2
Σ, @µj P S

+

ě 1´ δ.

0 1 2 3

K = 10

K = 20
§ chi-squared distribution
§ concentration around 1 (that
means error estimator has
perfect effectivity 1)
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality for set of vectors)

Given a finite set of parameters S “ tµ1, . . . , µSu Ă P, a failure probability
0 ă δ ă 1, w P R, w ą

?
e, we have for epµjq “ uN pµjq ´ uNpµjq,

K ě
logp#Sq ` logpδ´1q

logpw{
?

eq
that

P

#

}epµjq}
2
Σ

w2 ď
1
K

K
ÿ

i“1

pZT
i epµjqq

2 ď w2}epµjq}
2
Σ, @µj P S

+

ě 1´ δ.

w “ 2 w “ 3 w “ 4 w “ 5 w “ 10
#S “ 1 24 8 6 5 3
#S “ 100 48 16 11 9 6
#S “ 1000 60 20 13 11 7
#S “ 106 96 31 21 17 11

Table: Values for K that guarantee (1) for all µj P S with δ “ 10´2.
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Randomized a posteriori error estimation Norm estimate

Proposition (Concentration inequality for set of vectors)

Given a finite set of parameters S “ tµ1, . . . , µSu Ă P, a failure probability
0 ă δ ă 1, w P R, w ą

?
e, we have for epµjq “ uN pµjq ´ uNpµjq,

K ě
logp#Sq ` logpδ´1q

logpw{
?

eq
that

P

#

}epµjq}
2
Σ

w2 ď
1
K

K
ÿ

i“1

pZT
i epµjqq

2 ď w2}epµjq}
2
Σ, @µj P S

+

ě 1´ δ.

Define ∆pµq :“
´

1
K

řK
i“1pZ

T
i epµqq2

¯1{2

Problem: estimator ∆pµq “
´

1
K

řK
i“1pZ

T
i pu

N pµjq ´ uNpµjqqq
2
¯1{2

involves high-dimensional finite element solution
ùñ Computationally infeasible in the online stage
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Randomized a posteriori error estimation A posteriori error estimation

A fast-to-evaluate randomized error estimator

§ Exploit error residual relationship

ZT
i epµq “ ZT

i Apµq´1pf pµq ´ ApµquNpµqq
looooooooooomooooooooooon

residual rpµq:“

“ pApµq´TZi
loooomoooon

dual problem

qT rpµq

§ Define solutions of dual problems with random right-hand sides Zi :

yN
i
pµq :“ Apµq´TZi

§ Approximation of the dual solutions via model order reduction:

yN
i
pµq « ry

i
pµq P rY Ă XN ,

where rY dual reduced space
§ Define fast-to-evaluate randomized error estimator

r∆pµq :“

˜

1
K

K
ÿ

i“1

pry
i
pµqT rpµqq2

¸1{2
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Randomized a posteriori error estimation A posteriori error estimation

A fast-to-evaluate randomized error estimator

Proposition
Choose S P N in the offline stage. Then, in the online stage for any given
w ą

?
e and δ ą 0 we have for S different parameters values µj , j “ 1, . . . ,S in a

finite parameter set S “ tµ1, . . . , µSu and

K ě
logpSq ` logpδ´1q

logpw{
?

eq
that r∆pµjq :“

˜

1
K

K
ÿ

i“1

pry
i
pµjq

T rpµjqq
2

¸1{2

satisfies

P
!

pαwq´1
r∆pµjq ď }epµjq}Σ ď pαwq r∆pµjq, µj P S,

)

ě 1´ δ,
w

1

where

α “ max
µPP

˜

max

#

∆pµq

r∆pµq
,
r∆pµq

∆pµq

+¸

ě 1.

and we assume invertibility of Σ and that there holds almost surely ε ď w´1.
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Randomized a posteriori error estimation Numerical Experiments

Numerical experiments: acoustics in 2D

§ Ω “ p0, 1q ˆ p0, 1q

§ X “ tv P H1pΩq : vp0, x2q “ 0, x2 P p0, 1qu

§ Apµq :“ ´Bx1x1 ´ µ1Bx2x2 ´ µ2 ,

§ P “ r0.2, 1.2s ˆ r10, 50s
§ Neumann b.c. on top: gN “ cospπxq

§ µ1

0.2 0.4 0.6 0.8 1 1.2

µ
2

10

20

30

40

50
Resonances

§ high dimensional discretization: linear FE, h “ 0.01 in each direction
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Randomized a posteriori error estimation Numerical Experiments

Histograms of effectivity index r∆pµq{}upµq ´ uNpµq}H1pΩq

5 realizations

10−1 100 101

K = 5 (w = 26.1)
dim(Ỹ) = 14± 5

10−1 100 101

K = 10 (w = 6.5)
dim(Ỹ) = 21± 7

10−1 100 101

K = 20 (w = 3.2)
dim(Ỹ) = 28± 8

Figure: #S “ 104, dimpXNq “ 20, vertical dashed lines: 1{w and w , grey area:
1{ptol wq and tol w , where α « tol , tol “ 2, solid lines: chi-squared distribution
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Randomized a posteriori error estimation Numerical Experiments

Histograms of effectivity index r∆pµq{}upµq ´ uNpµq}H1pΩq

100 realizations

10−1 100 101

K = 10 (w = 6.5)
tol = 3

dim(Ỹ) = 12± 2

10−1 100 101

K = 10 (w = 6.5)
tol = 2

dim(Ỹ) = 21± 7

10−1 100 101

K = 10 (w = 6.5)
tol = 1.5

dim(Ỹ) = 33± 5

10−1 100 101

K = 20 (w = 3.2)
tol = 3

dim(Ỹ) = 16± 4

10−1 100 101

K = 20 (w = 3.2)
tol = 2

dim(Ỹ) = 28± 8

10−1 100 101

K = 20 (w = 3.2)
tol = 1.5

dim(Ỹ) = 42± 10

10−1 100 101

K = 50 (w = 2.1)
tol = 3

dim(Ỹ) = 26± 5

10−1 100 101

K = 50 (w = 2.1)
tol = 2

dim(Ỹ) = 39± 7

10−1 100 101

K = 50 (w = 2.1)
tol = 1.5

dim(Ỹ) = 56± 9

Figure: #S “ 104, dimpXNq “ 20, vertical dashed lines: 1{w and w , grey area:
1{ptol wq and tol w , where α « tol , tol “ 2, solid lines: chi-squared distribution
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Summary

Summary

§ Reduced (local approximation) spaces generated by methods from
Randomized Linear Algebra

Probabilistic a priori error bound/Numerical experiments: convergence
rate is only slightly worse compared to the optimal rate (factor

?
n).

Probabilistic a posteriori error bound allows to build the reduced space
adaptively
required number of local solutions of PDE scale (roughly) with size of
the reduced space; Numerical experiments: faster than Lanczos

§ Proposed randomized a posteriori error estimator for projection-based
model order reduction methods that...

... is based on concentration inequalities, error-residual relationship,
and random dual problem
... does only contain computable constants
... is reliable and efficient at high (given) probability
... has a favorable computational complexity as dimp rYq can be chosen
relatively small

Thank you very much for your attention!
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