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Background

Network models capture the behaviors and dynamics of many
interconnected physical systems.

Power grid Robots in our lab Transportation network

Network systems tend to be large-scale.
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Background

Social networks, in organizations, social media,.... (from the next web)

Biological networks (The protein interaction

network of Treponema pallidum, Wikimedia commons)

Disease network (from CCSB)
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Power grid of Northern Italy 1

Representation of the physical
network of transmission lines,
which has 678 nodes and 822
edges.

Such large-scale network
complicates analysis and
synthesis.

Apart from the network structure,
the physical structure important,
i.e., 2nd order structure.

1Motter, Adilson E., et al. ”Spontaneous synchrony in power-grid networks.” Nature
Physics 9.3 (2013): 191-197.
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Problem setting

u y u ŷMOR

Model reduction with preservation of network structure

Systems with network structure have useful properties.

Consensus and synchronization.

Spatial structure is crucial for distributed controller design, sensor
allocation, etc..

Specific physical structure, such as second order structure, is useful.

Reduced-order models ease analysis, controller design, etc.
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Order reduction methods

Various existing model order reduction methods:

Balanced realizations based order reduction.
Linear: Moore ’81, and many more, overview Antoulas ’05, Nonlinear: S. ’93, Fujimoto/S’10, and a few more.....

Moment matching methods, mainly based on transfer functions,
extension to state space forms.
Linear: many references, overview Antoulas ’05, Linear and nonlinear: Astolfi’10 and a few more

Singular perturbation methods, or slow fast system separation for
control systems.
Kokotovic/Khalil/O’Reily’86, and many more for hyperbolic systems, non-hyperbolic Jardon-Kojakhmetov/S.’16,17

Just applying these methods to networks does not preserve the network
structure.
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Order reduction methods for graphs

Clustering based model order reduction:

Recent interest, clustering of nodes.
Ishizaki et al. ’14, Monshizadeh et al.’14, Van der Schaft ’14, Besselink et al.”16

Structure preservation for power systems reduction:

Kron reduction.
Van der Schaft’10, Dörfler/Bullo’13, Caliskan/Tabuada’14

Projection based reduction.
Monshizadeh et al.’17

Various issues to deal with, topic of this lecture!
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Graph theory

An undirected graph G = (V, E ,W), where |V| = n, |E| = m.
V: a set of nodes, E ⊆ V ×V: a set of edges, W: the weights of edges

The Laplacian matrix of the undirected graph G is L, defined by

Lij =


degree of node i , i = j
−wij , i 6= j and node i is adjacent to j
0, otherwise

1

2

3

4
3 1

1

2

1

Laplacian matrix

L =


6 −1 −2 −3
−1 2 −1 0
−2 −1 4 −1
−3 0 −1 4

 .
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Network system

Consider a network of single integrator systems:

Σ : Mẋ = −Lx + Bu.

states: x ∈ Rn, inputs: u ∈ Rp

evolves as a weighted connected undirected graph G

Specific structure:
M is diagonal positive definite.
L is a Laplacian matrix of G.

Semistable, NOT asymptotically stable

Jacquelien Scherpen Model reduction of network systems Utrecht, 8 June 2018



Network system

Consider a network of single integrator systems:
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Example (mass-damper system)

3

1

1

1

2

1

y2

y1

y3

y4

1

2

3

4

u1

u2


1 0 0 0
0 5 0 0
0 0 2 0
0 0 0 4




ẋ1

ẋ2

ẋ3

ẋ4

 = −


5 −1 −1 −3
−1 4 −1 −2
−1 −1 3 −1
−3 −2 −1 6




x1

x2

x3

x4

+


1 0
0 1
0 0
0 0

[ u1

u2

]
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ẋ2

ẋ3
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Example (electrical network)

R1 R2

R3

V1

V2V3

u1

u2

Vi : voltage of node i

Ri : resistors

ui : current sources or sinks

unit capacities

Simple network system (Kirchhoff’s voltage law):V̇1

V̇2

V̇3

 = −

 1
R1

+ 1
R2

− 1
R1

− 1
R2

− 1
R1

1
R1

+ 1
R3

− 1
R3

1
R2

− 1
R3

1
R2

+ 1
R3

V1

V2

V3

+

 u1

0
−u2


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Example (continued)

Simple Network System:V̇1

V̇2

V̇3

 = −

 1
R1

+ 1
R2

− 1
R1

− 1
R2

− 1
R1

1
R1

+ 1
R3

− 1
R3

1
R2

− 1
R3

1
R2

+ 1
R3

 V1

V2

V3

+

1 0
0 0
0 −1

[u1

u2

]
Laplacian matrix (Kirchhoff matrix)

Similar to mass-damper system with external forces.

Network system

Σ :

{
ẋ = −Lx + Bu,
y = Cx .

with x ∈ Rn

Notice that Laplacian matrix L represents an undirected network, which
satisfies L ≥ 0, L1 = 0 .
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ẋ = −Lx + Bu,
y = Cx .

with x ∈ Rn

Notice that Laplacian matrix L represents an undirected network, which
satisfies L ≥ 0, L1 = 0 .

Jacquelien Scherpen Model reduction of network systems Utrecht, 8 June 2018



More general network systems

Results of this talk hold for a more general class of network systems
(beyond single integrators), i.e., the dynamics of each agent is described by

ẋi = Axi + Bvi

θi = Cxi

xi ∈ Rn̄, vi ∈ Rm̄, θi ∈ Rm̄, with diffusive coupling rule

mivi = −Σn
j=1,j 6=Iwij(θi − θj) + Σp

j=1fijuj

mi > 0, uj ∈ Rm̄, j ∈ {1, . . . , p}

results in network dynamics given by

(M ⊗ I )ẋ = (M ⊗ A− L⊗ BC ) x + (F ⊗ B)u

where the Laplacian L includes the wij , and M =diag(m1, . . . ,mn) > 0.
Semistable, NOT asymptotically stable.
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Problem Formulation

Given a network system

Σ : (M ⊗ I )ẋ = (M ⊗ A− L⊗ BC ) x + (F ⊗ B)u.

with A no poles in the RHP, and the network system fulfills the
synchronization property, i.e., limt→∞ |xi (t)− xj(t)| = 0.

Apply Petro-Galerkin projection with W ,V ∈ Rn×r (r � n) full column
rank, such that:

M̂ := W TMV and L̂ := W TLV are again an inertia and Laplacian
matrix, resp. Van der Schaft’14, Monshizadeh/Van der Schaft’14

The reduced-order model Σ̂ has the same structure as above and
‖Σ− Σ̂‖ is small enough in terms of H2- or H∞-norms.
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Clustering of graphs

Definition (Clustering)

node set V =⇒ nonempty disjoint subsets {C1, C2, · · · , Cr}.

Definition (Cluster matrix)

Consider a graph clustering {C1, C2, · · · , Cr} of G with n
nodes. Cluster matrix P ∈ Rn×r :

P := [p(C1), p(C2), · · · , p(Cr )],

p(Ci ) ∈ Rn: the k-th element is 1 if k ∈ Ci , 0 otherwise.

Take the cluster matrix for projection, i.e., W = V = P, then

M̂ := PTMP diagonal positive-definite;
L̂ := PTLP Laplacian of a connected undirected graph.
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Example (structure preservation)

1

2

3

4
3 1

1

2

1 L =


6 −1 −2 −3
−1 2 −1 0
−2 −1 4 −1
−3 0 −1 4

, M =


1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4



1

2

3

4
3 1

1

2

1 P =


1 0
1 0
0 1
0 1



1 2
6

L̂ = PTLP =

[
6 −6
−6 6

]
, M̂ = PTMP =

[
3 0
0 7

]
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Cluster selection

How to cluster, i.e.,

Problem

Find a clustering, with cluster matrix P such that the reduced-order model
Σ̂ approximates the original system Σ well.

Aggregate nodes with similar behavior:

How to capture behavior?

How to quantify the differences in behavior?

Here we use

input to state transfer functions of the nodes.

and H2-norms for the difference.
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Cluster selection

For general networks, under the assumptions on the A matrix and the
synchronization property of the network, we have

‖ηi (s)− ηj(s)‖2
H2

=

∫ ∞
0

tr
[
(eTi ⊗ I )ξ(t)ξT (t)(ej ⊗ I )

]
dt,

with ηi the transfer function of node i , ξ(t) the state impulse response of
the system. It can be proven to be always bounded!

Note that this quantifies the (dis)similarity between node i and j in H2

sense.

(For a single integrator system:
‖ηi (s)− ηj(s)‖H2 = ‖(eTi − eTj )(sM + L)−1B‖H2 )
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(For a single integrator system:
‖ηi (s)− ηj(s)‖H2 = ‖(eTi − eTj )(sM + L)−1B‖H2 )
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Recursive clustering algorithm

Definition (Dissimilarity Matrix D ∈ Rn×n)

Dij = ‖ηi (s)− ηj(s)‖H2

Algorithm (recursive clustering)

Step 1: Compute D matrix

Step 2: Find the minimal off-diagonal entry Dµν .

Step 3: Cluster nodes µ and ν

Step 4: Generate Σ̂ by P resulting from the clustering in Step 3.

Step 5: Repeat Step 1 to Step 4 until obtaining r -th order model.

Other clusterings (e.g., hierarchical) possible.
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Illustrative example

mass-damper network system:

3

1

1

1

2

1

y2

y1

y3

y4

1

2

3

4

u1

u2

Figure: Topology of the original network

M =


1 0 0 0
0 5 0 0
0 0 2 0
0 0 0 4

,

L =


6 −1 −2 −3
−1 3 −1 −1
−2 −1 4 −1
−3 −1 −1 5

,

B =

[
1 0 0 0
0 1 0 0

]T
, C = I4.
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Illustrative example (continued)

Step 1: Compute the dissimilarity matrix

D =


0 0.2940 0.1342 0.1472

0.2940 0 0.2098 0.2322
0.1342 0.2098 0 0.0277
0.1472 0.2322 0.0277 0

 .
Step 2: The minimal value is 0.0277, which implies that the nodes 3
and 4 have most similar behaviors.

Step 3: Clustering: C1 = {1}, C2 = {2}, C3 = {3, 4}.
Step 4: Projection matrix:

P =


1 0 0
0 1 0
0 0 1
0 0 1

 .
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Illustrative example (continued)

u2

1
2

5
ŷ3

ŷ2

ŷ1

3

2

1
u1

=ŷ4

Figure: Topology of the reduced-order network

M̂ =

 1 0 0
0 5 0
0 0 6

,

L̂ =

 6 −1 −5
−1 3 −2
−5 −2 7

,

B̂ =

[
1 0 0
0 1 0

]T
,

Ĉ =


1 0 0
0 1 0
0 0 1
0 0 1

 .
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Error bound

An error bound expression for one step clustering in the single
integrator case is easily computable.

An error bound for the general network description reduced to r
clusters is given by dissimilarity between clusters, i.e.,

‖η(s)− η̂(s)‖H2 ≤ γa
r∑

k=1

max
i ,j∈Ck

Dij ,

where γa is a scalar satisfying an LMI, i.e.,M ⊗ (AT + A)− L⊗ (CTBT + BC) L⊗ BC −I
L⊗ CTBT −γaI I

−I I −γaI

 ≺ 0
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Illustrative example (continued)
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Figure: Plot of the error magnitude.

The error bounds are:
‖η1(s)− η̂1(s)‖ ≤ 0.196, ‖η2(s)− η̂2(s)‖ ≤ 0.039,
‖η3(s)− η̂3(s)‖ ≤ 0.046, ‖η4(s)− η̂3(s)‖ ≤ 0.037.
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Properties of the reduced model

The reduced-order network system Σ̂ has the following properties:

The synchronization property is preserved, i.e., if the initial conditions
are ”equal” for the full order and reduced order network, then the
nodes of the reduced order network converge to the same value as the
nodes of the original network.

‖Σ− Σ̂‖H2 and ‖Σ− Σ̂‖H∞ are bounded.

If nodes µ and ν are clustered
Then, ηi (s)− η̂i (s) = Ki (s)[ηµ(s)− ην(s)]
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Minimal network realization

What is a minimal network realization?

Definition

A network realization is minimal if there are no 0-dissimilar vertices in the
network, i.e., if Dij = ‖ηi (s)− ηj(s)‖H2 6= 0 for i 6= j .

Thus, if Dij = 0, then node i and j are 0-dissimilar, and the network is
non-minimal.

Relation with ”conventional” minimality of the overall multi-agent system:

Relation

If Σ is minimal (controllable and observable), then Σ is also a minimal
network realization.

Not vice versa!

Jacquelien Scherpen Model reduction of network systems Utrecht, 8 June 2018



Minimal network realization

What is a minimal network realization?

Definition

A network realization is minimal if there are no 0-dissimilar vertices in the
network, i.e., if Dij = ‖ηi (s)− ηj(s)‖H2 6= 0 for i 6= j .

Thus, if Dij = 0, then node i and j are 0-dissimilar, and the network is
non-minimal.

Relation with ”conventional” minimality of the overall multi-agent system:

Relation

If Σ is minimal (controllable and observable), then Σ is also a minimal
network realization.

Not vice versa!

Jacquelien Scherpen Model reduction of network systems Utrecht, 8 June 2018



Computational issues

Normally for calculating the H2 norm (necessary for the dissimilarity) the
controllability Gramian can be used. However, the system is not
asymptotically stable.

Solution: Use a type of network controllability Gramian.

Iterative clustering and hierarchical clustering can be computationally
expensive.

Solution: Hierarchical clustering considers proximity of various
clusters, and can be approximated by taking average dissimilarities
(per cluster) of vertices to determine the proximity.
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Small world network example

Left: Watts-Strogatz network
with 500 nodes, 2000 edges, and
10 inputs.

Bottom: Approximated by
iterative clustering (left) and
hierarchical clustering (right) with
50 clusters.
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Small world network example continued

Table: Comparison of two algorithms for a reduced order of 50

Algorithm ‖Σs − Σ̂s‖H2 Total computation time

Iterative clustering 0.0324 4142.5729s

(Appr.) hierarchical clustering 0.0330 38.5899s

0 100 200 300 400 500
Reduced order r

0

0.05

0.1

0.15

0.2

0.25

jj'
s
!
'̂

s
jj H

2

Iterative Clustering
Hierarchical Clustering

Approximation error versus
reduced order r .
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Second-order network systems

Mass-spring-damper network

Mẍ + Dẋ + Lx = Fu. (1)

Example: linearized coupled oscillator model in the power grid.

Structural conditions

M: diagonal positive definite;

D: positive definite;

L: Laplacian matrix of the weighted undirected graph describing the
coupling among nodes.
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A second-order network example

3

1

2

1

1

2

3

4

u1

u2

1

21

1

1 0.5

2

L =


4 −1 −2 −1
−1 3 −1 −1
−2 −1 5 −2
−1 −1 −2 4

,

D =


4 −2 0 −1
−2 2 0 0

0 0 3.5 −3
−1 0 −3 4

 ,

M =


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

 ,F =


1 0
0 0
0 0
0 1

 .
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Problem formulation

Given a second-order network system

Σ : Mẍ + Dẋ + Lx = Fu, y = x .

Apply Petrov-Galerkin projection with the cluster matrix, i.e.,
P ∈ Rn×r (r � n)

The reduced-order model

Σ̂ : M̂z̈ + D̂ż + L̂z = PTFu,

with M̂ := PTMP, D̂ := PTDP, L̂ := PTLP.

Find a suitable clustering such that ‖Σ− Σ̂‖ is small enough in terms of
H2 or H∞ norms
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Existing methods

”Conventional” second-order model reduction methods

Second-order balanced truncation
Meyer & Srinivasan’96, Reis & Stykel, Benner & Saak, Losse & Mehrmann, Y. Chahlaoui, et al.’06. .....

Krylov subspace methods
Salimbahrami & Lohmann, Bai & Su’05, Su & Craig Jr. ...

Limitation: network structure is not preserved.

Clustering-based approach

Ishizaki & Imura ’15

Limitation:

Loss of the structure of Laplacian matrix

The system has to be asymptotically stable
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Network Gramian

Again: dissimilarity matrix defined and relevant for clustering!
For computation, the network Gramian is relevant, i.e.,

Network controllability Gramian

P =

∫ ∞
0

(eAτ − J )BBT (eA
T τ − J T )dτ.

where A =

[
0 I

−M−1L −M−1D

]
, B =

[
0

M−1F

]
, and J = lim

τ→∞
eAτ =

1

1TD1

[
11TD 11TM
0n×n 0n×n

]
.

P fulfills a Lyapunov type of equation, and the rank has a direct relation
with controllability of the original semi-stable system!
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Network Gramian

The network Gramian P is useful for fast computation of dissimilarity and
error bound computation, i.e., for dissimilarity:

Dij = ‖ηi (s)− ηj(s)‖H2 =
√
HPHT , with H = [(ei − ej)

T , 01×n]

Error bound

‖Σ− Σ̂‖H2 =

√
tr

(
Ce

[
Pn Px

PT
x Pr

]
CTe
)
,

Pn is the network controllability Gramian of the original network
Pr is of the reduced order network
Px is a coupling term that is a solution to a Sylvester like equation.
Ce is the output matrix of the error system.
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Illustrative example

Mass-damper-spring system:

D =


0 0.1920 0.2449 0.2424

0.1920 0 0.0940 0.1163
0.2449 0.0940 0 0.0333
0.2424 0.1163 0.0333 0

 .

3

1

2

1

1

2

3

4

u1

u2

1

2

Projection

1

1

1 0.5 3

2

1

2

u1 u2

2
1

1

3

0.5
1

2

Figure: Illustration of second-order network system
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Illustrative example (continued)
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Figure: Plot of the error magnitude.

The error bounds are:
‖η1(s)− η̂1(s)‖ ≤ 0.196, ‖η2(s)− η̂2(s)‖ ≤ 0.039,
‖η3(s)− η̂3(s)‖ ≤ 0.046, ‖η4(s)− η̂3(s)‖ ≤ 0.037.
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Some remarks

Small world second order network example with various clustering
methods, and how to use these methods can be found in our TAC’17
paper Cheng/Kawano/S.’17.

Applicable for second order equations description of the power grid.

In another TAC’17 paper we develop a projection for exact model
reduction for electrical networks with power loads based on a
projected incidence matrix which provides a new decomposition of the
Laplacian. Monshizadeh et al.’17.

Relation with clustering as above, and network minimality not yet
clear. Future work!
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Background on balancing

Balancing based on diagonalizing two Gramians. For asymptotically
stable systems the controllability and observability Gramian.

Balanced truncation removes badly controllable and badly observable
states, hence takes control system considerations into account.

Balanced truncation preserves stability and balanced structure.
However, other structure (such as network structure!) is generally not
preserved.

Network systems are semi-stable, thus balanced truncation not
directly applicable. And how about the network structure?

→ Enforce network structure, and separate marginally stable part
from asymptotically stable part.
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→ Enforce network structure, and separate marginally stable part
from asymptotically stable part.
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Network structure preservation

Reduce the system, possibly first destroying network structure.

Make sure the reduced system can be transformed into a network
system, i.e., when can a linear system be transformed into a network
system through a state transformation?

Σ̃ :

{
˙̂z = Aẑ + Bu,
ŷ = Cẑ ,

ẑ = Tx̂
⇐⇒ Σ̂ :

{
˙̂x = −L̂x̂ + F̂ u,

ŷ = Ĥx̂ ,

Questions:
A. Which property of Σ̃ implies there exists a T s.t. L̂ is a Laplacian?
B. How to ensure the system after balanced truncation has this property?
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Network structure preservation

Focus on single integrator systems:

Σ̃ :

{
˙̂z = Aẑ + Bu,
ŷ = Cẑ ,

ẑ = Tx̂
⇐⇒ Σ̂ :

{
˙̂x = −L̂x̂ + F̂ u,

ŷ = Ĥx̂ ,

Theorem

Σ̃ is equivalent to a network system Σ̂ (or A is similar to −L̂)
if and only if all the eigenvalues of A are real, and one of its eigenvalues
is zero, i.e.

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn−1(A) < λn(A) = 0
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Splitting up the system

First separate the zero eigenvalue of the Laplacian:

Σ :

{
ẋ = −Lx + Fu,
y = Hx .

Semistable System

Transform the Laplacian:

L = TΛLT
T

=
[
T1 T2

] [Λ̄L

0

] [
TT

1

TT
2

]
,

T1 ∈ Rn×(n−1),T2 =
1√
n

zs = T1x
za = T2x Σs :

{
żs = Azs + Bu,
ys = Czs ,

where A = AT = −Λ̄L,

Stable System

Σa :


ża =

1√
n

1TFu,

ya =
1√
n
H1za.

Average System
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Generalized Gramians

Consider the stable subsystem:

Σs :

{
żs = Azs + Bu,
ys = Czs ,

where zs ∈ Rn−1

Generalized Controllability Gramian P and Observability Gramian Q

min trace(P)

AP + PA + BBT ≤ 0,

min trace(Q)

Q is diagonal;

ATQ + QA + CTC ≤ 0.

Balancing Transformation such that in new coordinates:

TPTT = T−TQT−1 = diag(σ1, σ2, · · · , σn−1),

σ1 ≥ σ2 ≥ · · · ≥ σn−1 are generalized Hankel singular values.
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Generalized balanced truncation

Truncation: If σr � σr+1, then truncation can be applied, i.e., put
xr+1 = · · · = xn−1 = 0.

Then combine the reduced system Σ̃s with the average system Σa

(the part corresponding to the zero eigenvalue).

Result

All the eigenvalues of the reduced order system matrix Â are real negative.

Thus

[
Â

0

]
is similar to a Laplacian matrix, and thus there exists a

transformation s.t. the reduced system is a network system.

The standard error bound now holds:

‖Σ− Σ̂‖∞ = ‖Σs − Σ̃s‖∞ ≤ 2
n−1∑
i=r

σi ,
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Illustrative Example

For comparison, we consider an network example in Monshizadeh et al.
’14 and Mlinarić et al.’15:

  1

  2

  3

  4

  5

  6

  7

  8

  9

  10

5

3

2

1
2

3

5

2

6

7 6
7

1

1

1

Figure: A network example with 10 vertices where the edge weights are shown by
the thickness of the connection lines
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Illustrative Example

L =



5 0 0 0 0 −5 0 0 0 0
0 5 0 0 −3 −2 0 0 0 0
0 0 6 −1 −2 −3 0 0 0 0
0 0 −1 6 −5 0 0 0 0 0
0 −3 −2 −5 25 −2 −6 −7 0 0
−5 −2 −3 0 −2 25 −6 −7 0 0
0 0 0 0 −6 −6 15 −1 −1 −1
0 0 0 0 −7 −7 −1 15 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 0 0 1



L̂ =


18.4350 −4.8194 −1.9862 −0.2556 −11.3738
−4.8194 11.8806 −1.9862 −0.2556 −4.8194
−1.9862 −1.9862 6.2144 −0.2556 −1.9862
−0.2556 −0.2556 −0.2556 1.0225 −0.2556
−11.3738 −4.8194 −1.9862 −0.2556 18.4350


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Illustrative Example

  1

  2

3  

4  

  5

4.81938

1.98625

0.255631

11
.3

73
8

1.98625

0.
25

56
31

4.
81

93
8

0.
25

56
31

1.98625

0.255631

Approaches Proposed Method Monshizadeh Mlinarić

‖Σ− Σ̂‖H2

‖Σ‖H2

0.0849 0.5270 0.1459
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Some remarks

This balancing based model reduction procedure always allows to
obtain a network system.

However, there is only a guarantee that the system can be represented
by a complete graph, other structures cannot be guaranteed.

Second order structure is not necessarily preserved either, potentially
gradient system approach can help. S. /Van der Schaft’11

More general network structure is also possible, combined passivity
preserving balancing and balancing of the network. In fact, nodes and
Laplacian reduction can be separated, Cheng/S./Besselink’17.

Jacquelien Scherpen Model reduction of network systems Utrecht, 8 June 2018



Some remarks

This balancing based model reduction procedure always allows to
obtain a network system.

However, there is only a guarantee that the system can be represented
by a complete graph, other structures cannot be guaranteed.

Second order structure is not necessarily preserved either, potentially
gradient system approach can help. S. /Van der Schaft’11

More general network structure is also possible, combined passivity
preserving balancing and balancing of the network. In fact, nodes and
Laplacian reduction can be separated, Cheng/S./Besselink’17.

Jacquelien Scherpen Model reduction of network systems Utrecht, 8 June 2018



Some remarks

This balancing based model reduction procedure always allows to
obtain a network system.

However, there is only a guarantee that the system can be represented
by a complete graph, other structures cannot be guaranteed.

Second order structure is not necessarily preserved either, potentially
gradient system approach can help. S. /Van der Schaft’11

More general network structure is also possible, combined passivity
preserving balancing and balancing of the network. In fact, nodes and
Laplacian reduction can be separated, Cheng/S./Besselink’17.

Jacquelien Scherpen Model reduction of network systems Utrecht, 8 June 2018



Some of my references on networks

Cheng, X. , & Scherpen, J.M.A. (2018), Clustering Approach to Model Order Reduction
of Power Networks with Distributed Controllers, Advances in Computational Mathematics,
to appear.
Monshizadeh, N., De Persis, C., van der Schaft, A. J., & Scherpen, J. M. A. (2018). A
Novel Reduced Model for Electrical Networks With Constant Power Loads. IEEE
Transactions on Automatic Control, 63(5), 1288-1299.
Cheng, X., Scherpen, J.M.A., & Besselink, B. (2017), Balanced Truncation of Networked
Linear Passive Systems, submitted, available on arXiv:1710.03455 [math.OC].
Cheng, X., Kawano, Y., & Scherpen, J. M. A. (2017). Reduction of Second-Order
Network Systems with Structure Preservation. IEEE Transactions on Automatic Control,
62(10), 5026-5038.
Cheng, X., & Scherpen, J. M. A. (2017). A New Controllability Gramian for Semistable
Systems and Its Application to Approximation of Directed Networks. In Proc. 56th IEEE
Conference on Decision and Control, Melbourne, Dec. 2017.
Cheng, X., & Scherpen, J. M. A. (2017). Balanced Truncation Approach to Linear
Network System Model Order Reduction. In Proc. IFAC World Congress, Toulouse, July
2017, pp. 2451-2456.
Cheng, X., Kawano, Y., & Scherpen, J. M. A. (2016). Graph structure-preserving model
reduction of linear network systems. In Proc. European Control Conference, Aalborg, July
2016, pp. 1970-1975. Extended version conditionally accepted in an IEEE journal.

Jacquelien Scherpen Model reduction of network systems Utrecht, 8 June 2018



1 Introduction

2 Preliminaries

3 Clustering-based model reduction
Structure-preserving projection
Error bound
Properties of the reduced model
Some remarks
Small world example

4 Clustering-based reduction of second order network systems

5 Generalized balancing

6 Conclusion and outlook

Jacquelien Scherpen Model reduction of network systems Utrecht, 8 June 2018



Conclusion

Summarizing:

Structure preserving order reduction methods with error bounds based
on clustering based on dissimilarity for first and second order networks.

A generalized balancing approach that preserves the network structure
is introduced.

Various new concepts, such as network minimality, and a network Gramian
are introduced. These are control systems concepts necessary for taking
the reduction of networks a step further.
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Outlook

Directed graphs, Cheng/S. CDC17.

Lur’e systems, Cheng/S ECC’18. Nonlinear networks? Differential
balancing? Kawano/S.’17

Time scale separation in networks, very relevant for e.g., power
networks. Slow coherency and singular perturbation methods should
be incorporated.

Other energy applications such as the different time scales of the
power and gas networks and market structures? .
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