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Outline
• Brief outline how we obtain predictions based on physics-based 

equations to illustrate …
• added value of physics-based modelling such as
• stability, robustness, well-posedness
• assessment of accuracy via error estimators

• How to combine traditional methods and machine learning



Making predictions based on physics-based equations

• Step 1: Modeling: Describe 
phenomena with physics-based 
equations (ordinary or partial 
differential equations (PDE)) on a 
certain domain.

• Step 2: Approximation: Use for 
instance Finite Element Method to 
discretize PDE. Results in linear system 
of equations we have to solve.

• Step 3: Acceleration: Fast solvers, 
reduced order modelling,… 

Example:
• Equations of linear elasticity: Find the 

displacement vector u and the Cauchy 
stress tensor 𝜎(u) such that

−∇ ' 𝜎 𝑢 = 𝑓 + boundary conditions

• Find 𝑈 that satisfies 𝐴𝑈 = 𝐹.



Making predictions based on physics-based equations

• FEM discretization: more than 20 
millions degrees of freedom

• Dimension Schur complement: 
about 349 000  

• Simulation time with reduced 
interface spaces: 2 seconds

• Dimension reduced Schur 
complement: about 12 000

Results on shiploader by company Akselos using reduced interface spaces introduced in K. Smetana, A.T. Patera, SIAM J. Sci. Comput., 2016. 



Various sources of errors
• Model error (equations of linear elasticity do not describe 

phenomenon perfectly)
• Data error (measurements of data such as Young’s modulus is prone 

to errors)
• Discretization error (error due to FEM approximation) 
• Error due to acceleration (reduced model,…)
• Truncation error (error caused by linear systems of equations solver)

We have errors in every step, some are unavoidable
GOAL: Nevertheless ensure that we can relate prediction to true 

phenomenon. 



Added value of physics-based modelling

1. Stability, robustness, well-posedness
2. Accuracy can be assessed and analyzed, for instance, by a posteriori 

or a priori error bounds
3. We are in general able to interpret, understand, and explain the 

results. 



Stabilization issues with Deep Nets

• Small changes in input data can have a significant effect
• Related problem: observation of vanishing or exploding gradients 

I. Goodfellow, J. Shlens, C. Szegedy, CoRR 2015, A. Nguyen, J. Yosiniski, J. Clune, In Computer Vision and Pattern 
Recognition (CVPR ’15), IEEE, 2015, Antun et al., arXiv: 1902:05300, Y. Bengio, P. Simard, and P. Frasconi, IEEE
Transactions on Neural Networks, 1994.



Stability in the context of physics-based modelling
• Consider anisotropic Helmholtz equation:

• We have:                                                                       (Stability!)
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Stability in the context of physics-based modelling
• Consider for instance −𝑑𝑖𝑣 𝑎∇𝑢 = 𝑓 𝑖𝑛 𝐷. Then we have

For instance: A. Bonito et al, SIAM J. Math. Anal., 2017.

• Similarly for the nonlinear PDE 𝐴 𝑢 = 𝑓 𝑖𝑛 𝐷 we obtain
under certain verifiable conditions

G. Caloz and J. Rappaz, Handbook of Numerical Analysis, 1997. 

• Similar results hold for Finite Element approximations and reduced 
order approximations. 



Ensuring accurate predictions

• For very many PDEs we can bound the error between the solution 𝑢
and the Finite Element approximation 𝑢5 as follows:

• Ensures convergence at a certain rate and allows us to assess accuracy 
of approximation.

• Similarly, we can bound error in quantity of interest and use bound to 
correct the quantity of interest.



Probabilistic approaches for accuracy assessment
• Building statistical error models via Gaussian-process regression

(M. Drohmann, K. Carlberg, SIAM J. Sci. Comput., 2015; S. Pagani, A. Manzoni, K. Carlberg, arXiv, 2019;...)

• Exploiting results from compressed sensing to build fast-to-evaluate 
unbiased estimator for error (Y. Cao, L. Petzold, SIAM J. Sci. Comput., 2004; K. Smetana, O. 
Zahm, A.T. Patera, SIAM J. Sci. Comput., 2019)

• Probabilistic Numerical Methods: Interpret standard numerical 
methods in a probabilistic manner; Numerical methods solve an 
inference task (P. Henning, M. A. Osborne, M. Girolami, Proc. R. Soc. A, 2015; Owhadi, MMS, 2015; 
Owhadi, SIAM Rev., 2017,...)



How to combine traditional methods and ML
• Stabilization of Neural Networks:
• Interpret (simplified) Residual Network as discretization of ordinary 

differential equation        Derive stability criteria and develop stable networks 
(E. Haber and L. Ruthotto, Inverse Problems 17)

• Exploit connections between autoencoders and matrix 
decompositions:
• Goal: Find matrix decomposition 𝐴 ≈ 𝑈𝑉8 such that ∥ 𝐴 − 𝑈𝑉8 ∥:; is 

minimal. That is realized by Singular Value decomposition but also by 
autoencoders with linear activation

C. C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018.  



How to combine traditional methods and ML
• Stabilization of Neural Networks:
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• Physics-informed neural networks (M. Raissi, P. Perdikaris, G.E. Karniadakis, 17, 18, 19)

• Bayesian/probabilistic framework (e.g.: N. C. Nguyen et al, SIAM J. Sci. Comput, 2016)

• Data assimilation
Questions or comments?


