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Finnish Center for Artificial Intelligence
FCAI – from science to impact

• Agile Probabilistic AI
• Simulator-based inference
• Data-efficient deep learning
• Privacy-preserving and secure AI
• Interactive AI
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What is AI?

I Two types of AI

I Symbolic/logical
I Machine learning (ML): imitation-based AI

I Current revolution in machine-learning-based AI

I Combination of big data, models that benefit from big data, more computing
power (GPUs) and accessible programming environments

I We are nowhere close to human-level intelligence

I Imitation of examples in the data, not thinking



Flavours of ML

I Supervised learning

I E.g. classification, regression, time series prediction, emulators for expensive
simulators

I Outcome: map: x 7→ y

I Reinforcement learning

I Planning
I Outcome: policy: (state, observations) 7→ actions

I Unsupervised learning

I E.g. dimensionality reduction, generative modelling



Big data revolution in ML



Deep neural networks and data

I Most typical applications in supervised learning

I Require annotated (input, target output) pairs

I Current methods need a lot of data

I 100000 cases is a good start, the more the better!

I Upper limit still has not been found!

I Research viewpoint: less data may be OK, but more work and expertise needed
for good results



Limitations of deep neural networks (DNNs)

I DNNs are susceptible to adversarial examples

I In classification: selected examples with imperceptible differences are
seriously misclassified

I This is a feature, not a bug

I Robustness–accuracy trade-off
I More prior knowledge (e.g. structured models) can help

I Major challenge for reinforcement learning and optimisation

I Algorithms will learn to exploit any weaknesses of the model
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I In classification: selected examples with imperceptible differences are
seriously misclassifiedML Predictions Are (Mostly) Accurate but Brittle

“pig” (91%) “airliner” (99%)

+ 0.005 x =

noise (NOT random)

[Szegedy Zaremba Sutskever Bruna Erhan Goodfellow Fergus 2013]
[Biggio Corona Maiorca Nelson Srndic Laskov Giacinto Roli 2013]

But also: [Dalvi Domingos Mausam Sanghai Verma 2004][Lowd Meek 2005]
[Globerson Roweis 2006][Kolcz Teo 2009][Barreno Nelson Rubinstein Joseph Tygar 2010]

[Biggio Fumera Roli 2010][Biggio Fumera Roli 2014][Srndic Laskov 2013]

Szegedy et al. (arXiv:1312.6199) via https://adversarial-ml-tutorial.org/
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Probabilistic modelling and differential equations

I Inference of unknown parameters θ and initial conditions x0 in an ODE from noisy
observations Y = [y(t1), . . . , y(tn)], where

x ′(t) = g(x(t), θ), x(0) = x0

y(ti ) = x(ti ) + ηi

I Inference of latent driving functions f (t) (latent force models)

x ′(t) = g(x(t), f (t), θ), x(0) = x0

y(ti ) = x(ti ) + ηi



Modelling latent driving functions: Gaussian processes

I Gaussian process priors on driving functions f (t)

I Functional prior, specified by mean and covariance functions
I No need for time discretisation
I Can capture diverse activation profiles

f (t) v GP
(
µ (t) , k

(
t, t ′

))
where

µ (t) = E [f (t)] = 〈f (t)〉
k
(
t, t ′

)
= E

[
(f (t)− µ (t))

(
f
(
t ′
)
− µ

(
t ′
))]



Gaussian process examples: squared exponential covariance



Gaussian process examples: Matern covariance



Gaussian processes and ODEs (Lawrence et al., NIPS 2006)

I Assume x ∼ N (µ,Σ)

I Affine transformation Ax + b follows

(Ax + b) ∼ N (Aµ+ b,AΣAT )

I Insight: an analogous property applies to Gaussian processes:
For suitable g(), the solution for x(t) in

d x(t)

d t
= g(x(t), f (t), θ)

is an affine operator x(t) = Lg (f (t)) of f (t)
⇒ Joint Gaussian process over f (t), x(t)
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ODE Gaussian process

I Assuming x(t) ∼ GP(µx (t), kxx (t, t ′)), how to evaluate the mean function µx (t)
and covariance kxx (t, t ′)?

µx (t) = Ep(f (t))[Lg (f (t))]

kxx (t, t ′) = Ep(f (t),f (t′))[(Lg (f (t))− µx (t))(Lg (f (t))− µx (t))T ]

I For suitable kff (t, t ′) and linear g , these can be evaluated in closed form, leading
to very efficient computation

I E.g. squared exponential covariance:

kff (t, t ′) = α exp

(
(t − t ′)2

2`2

)



ODE Gaussian process applications I

I Single input motif gene regulation (Lawrence et al., NIPS 2006; Gao et al.,
Bioinformatics 2008):

d xi (t)

d t
= Bi + Si f (t)− Dixi (t)

I xi (t) target gene expression
I f (t) regulator activity



ODE Gaussian process applications II

I Translation+transcription model of gene regulation (Honkela et al., PNAS 2010;
Gao et al., Bioinformatics 2008):

d p(t)

d t
= f (t)− δp(t)

d xi (t)

d t
= Bi + Sip(t)− Dixi (t)

I xi (t) target gene expression
I p(t) regulator activity
I f (t) regulator mRNA expression



ODE Gaussian process applications III

I Modelling transcription+expression (Honkela et al., PNAS 2015):

d x(t)

d t
= B + Sf (t −∆)− Dx(t)

I x(t) gene expression
I f (t) transcriptional activity



Non-linear ODEs

I If Lg is not affine, x(t) will not follow Gaussian process

I Approximations still possible

I E.g. non-linear gene regulation model by Titsias et al. (BMC Systems Biology,
2012):

d pi (t)

d t
= fi (t)− δipi (t)

d xj (t)

d t
= bj + sjG (p1(t), . . . , pI (t); θj )− djxj (t)

with

G (p1(t), . . . , pI (t);wj ,wj0) =
1

1 + e−wj0−
∑I

i=1 wji log pi (t)



Gene transcription and expression model (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Gene transcription and expression fits (Honkela et al., PNAS 2015)
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Inferring simulators from data

How to fit a  
model to data  
when no  
standard  tools
apply
• only indirect  

observations
• likelihoods  

intractable

BOLFI: Gutmann & Corander2016

Real world



Example: Probabilistic modelling in cosmology (Regier et al., ICML 2015)

Celeste: Variational inference for a generative model of
astronomical images

Jeffrey Regier, University of California, Berkeley JEFF@STAT.BERKELEY.EDU
Andrew Miller, Harvard University ACM@SEAS.HARVARD.EDU
Jon McAuliffe, University of California, Berkeley JON@STAT.BERKELEY.EDU
Ryan Adams, Harvard University RPA@SEAS.HARVARD.EDU
Matt Hoffman, Adobe Research MDHOFFMA@CS.PRINCETON.EDU
Dustin Lang, Carnegie Mellon University DSTN@CMU.EDU
David Schlegel, Lawrence Berkeley National Laboratory DJSCHLEGEL@LBL.GOV
Prabhat, Lawrence Berkeley National Laboratory PRABHAT@LBL.GOV

Abstract
We present a new, fully generative model of op-
tical telescope image sets, along with a varia-
tional procedure for inference. Each pixel inten-
sity is treated as a Poisson random variable, with
a rate parameter dependent on latent properties
of stars and galaxies. Key latent properties are
themselves random, with scientific prior distribu-
tions constructed from large ancillary data sets.
We check our approach on synthetic images. We
also run it on images from a major sky survey,
where it exceeds the performance of the current
state-of-the-art method for locating celestial bod-
ies and measuring their colors.

1. Introduction
This paper presents Celeste, a new, fully generative model
of astronomical image sets—the first such model to be em-
pirically investigated, to our knowledge. The work we
report is an encouraging example of principled statistical
inference applied successfully to a science domain under-
served by the machine learning community. It is unfortu-
nate that astronomy and cosmology receive comparatively
little of our attention: the scientific questions are funda-
mental, there are petabytes of data available, and we as a
data-analysis community have a lot to offer the domain sci-
entists. One goal in reporting this work is to raise the profile
of these problems for the machine-learning audience and
show that much interesting research remains to be done.

Turn now to the science. Stars and galaxies radiate photons.
An astronomical image records photons—each originating

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Figure 1. An image from the Sloan Digital Sky Survey (SDSS,
2015) of a galaxy from the constellation Serpens, 100 million
light years from Earth, along with several other galaxies and many
stars from our own galaxy.

from a particular celestial body or from background at-
mospheric noise—that pass through a telescope’s lens dur-
ing an exposure. Multiple celestial bodies may contribute
photons to a single image (e.g. Figure 1), and even to a
single pixel of an image. Locating and characterizing the
imaged celestial bodies is an inference problem central to
astronomy. To date, the algorithms proposed for this in-
ference problem have been primarily heuristic, based on
finding bright regions in the images (Lupton et al., 2001;
Stoughton et al., 2002).

Generative models are well-suited to this problem—for
three reasons. First, to a good approximation, photon
counts from celestial objects are independent Poisson pro-
cesses: each star or galaxy has an intrinsic brightness that

Celeste

is effectively static during human time scales. In an imag-
ing exposure, the expected count of photons entering the
telescope’s lens from a particular object is proportional to
its brightness. When multiple objects contribute photons to
the same pixel, their rates combine additively.

Second, many sources of prior information about celestial
bodies are available, but none is definitive. Stars tend to
be brighter than galaxies, but many stars are dim and many
galaxies are bright. Stars tend to be smaller than galax-
ies, but many galaxies appear point-like as well. Stars and
galaxies differ greatly in how their radiation is distributed
over the visible spectrum: stars are well approximated by
an “ideal blackbody law” depending only on their tempera-
ture, while galaxies are not. On the other hand, stars are not
actually ideal blackbodies, and galaxies do emit energy in
the same wavelengths as stars. Posterior inference in a gen-
erative model provides a principled way to integrate these
various sources of prior information.

Third, even the most powerful telescopes receive just a
handful of photons per exposure from many celestial ob-
jects. Hence, many objects cannot be precisely located,
classified, or otherwise characterized from the data avail-
able. Quantifying the uncertainty of point estimates is
essential—it is often as important as the accuracy of the
point estimates themselves. Uncertainty quantification is a
natural strength of the generative modeling framework.

Some astronomical software uses probabilities in a heuris-
tic fashion (Bertin & Arnouts, 1996), and a generative
model has been developed for measuring galaxy shapes
(Miller et al., 2013)—a subproblem of ours. But, to our
knowledge, fully generative models for inferring celestial
bodies’ locations and characteristics have not yet been ex-
amined.1 Difficulty scaling the inference for expressive
generative models may have hampered their development,
as astronomical sky surveys produce very large amounts
of data. For example, the Dark Energy Survey’s 570-
megapixel digital camera, mounted on a four-meter tele-
scope in the Andes, captures 300 gigabytes of sky im-
ages every night (Dark Energy Survey, 2015). Once com-
pleted, the Large Synoptic Survey Telescope will house a
3200-megapixel camera producing eight terabytes of im-
ages nightly (Large Synoptic Survey Telescope Consor-
tium, 2014).

The rest of the paper describes the Celeste model (Sec-
tion 2) and its accompanying variational inference proce-
dure (Section 3). Section 4 details our empirical studies on
synthetic data as well as a sizable collection of astronomi-
cal images.

1However, see Hogg (2012) for a workshop presentation
proposing such a model.

Figure 2. The Celeste graphical model. Shaded vertices represent
observed random variables. Empty vertices represent latent ran-
dom variables. Black dots represent constants. Constants with
“bar” decorators, e.g. N�nb , are set a priori. Constants denoted by
uppercase Greek characters are also fixed; they denote parame-
ters of prior distributions. The remaining constants and all latent
random variables are inferred. Edges signify conditional depen-
dency. Rectangles (“plates”) represent independent replication.

2. The model
The Celeste model is represented graphically in Figure 2.
In this section we describe how Celeste relates celestial
bodies’ latent characteristics to the observed pixel inten-
sities in each image.

2.1. Celestial bodies

Celeste is a hierarchical model, with celestial objects atop
pixels. For each object s D 1; : : : ; S , the unknown 2-vector
�s encodes its position in the sky as seen from earth. In Ce-
leste, every celestial body is either a star or a galaxy. (In the
present work, we ignore other types of objects, which are
comparatively rare.) The latent Bernoulli random variable
as encodes object type: as D 1 for a galaxy, as D 0 for a
star. We set the prior distribution

as � Bernoulli.˚/: (1)
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Implementation: Probabilistic programming

I Probabilistic inference is hard

I Typically expert derivations, coding & tuning are required for good results
I Some easy-to-use frameworks exists, but often limited in scope
I Almost all real applications require computational approximations
I Non-trivial to judge if these are accurate enough

I Idea of probabilistic programming: user writes a description of the model, the
machine takes care of the rest

I Cf. writing machine code in assembly language vs. high level code

I Key challenge: how to perform inference efficiently

I Emerging solutions: Stan, Edward, PyMC3, Pyro, ELFI, . . .



Probabilistic programming example (Carpenter et al., JASS 2016)

parameters {

simplex[K] theta[M]; // topic dist for doc m

simplex[V] psi[K]; // word dist for topic k

}

model {

for (m in 1:M)

theta[m] ~ dirichlet(alpha); // prior

for (k in 1:K)

psi[k] ~ dirichlet(beta); // prior

for (n in 1:N) {

real gamma[K];

for (k in 1:K)

gamma[k] <- log(theta[doc[n],k]) + log(psi[k,w[n]]);

increment_log_prob(log_sum_exp(gamma)); // likelihood

}

}



Conclusion
I Deep neural networks (most) useful for unstructured problems with massive data
I Probabilistic models allow incorporating structure such as known physics
I Likelihood-free inference can incorporate existing simulators
I Gaussian processes are a powerful tool for modelling latent functions
I Probabilistic programming big help for implementation

http://mc-stan.org http://edwardlib.org

http://pyro.ai
http://gpflow.org

http://elfi.ai
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