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Theory of Deep Learning 2

• High performance
• Applied to services in several industries:

Google Deepmind, Facebook AI Lab.，Baidu, ...

Deep learning
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Deep learning• High performance in several 
applications

• But, theoretical understanding 
is not satisfactory

（Big issue all over the world）

Alex-net [Krizhevsky, Sutskever + Hinton, 2012]
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• ☆ReLU (Rectified Linear Unit)：
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Repeat “linear transform” and “nonlinear activation.”

𝑥 𝑊1𝑥 ℎ1(𝑊1𝑥) 𝑊2ℎ1(𝑊1𝑥) ℎ2(𝑊2ℎ1 𝑊1𝑥 )
Input Linear 

trans.
Nonlinear
activation

𝑥 𝑊1 ℎ1 𝑊2 ℎ2 𝑊3 ℎ3

ℎ1 𝑢 = ℎ11 𝑢1 , ℎ12 𝑢2 , … , ℎ1𝑑 𝑢𝑑
𝑇

• Sigmoid function：

Structure of deep NN

Linear 
trans.

Nonlinear
activation



Fully connected layer

• ℓ-th layer
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☆ReLU (Rectified Linear Unit)
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Sigmoid function

Examples of activation functions



Universal Approximator
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Year Basis function Space

1987 Hecht-Nielsen Depending on the target 𝐶(𝑅𝑑)

1988 Gallant & White Cos 𝐿2(𝐾)

Irie & Miyake integrable 𝐿2(𝑅
𝑑)

1989 Carroll & Dickinson Continuous sigmoidal 𝐿2(𝐾)

Cybenko Continuous sigmoidal 𝐶(𝐾)

Funahashi Monotone & bounded 𝐶(𝐾)

1993 Mhaskar + Micchelli Polynomial growth 𝐶(𝐾)

2015 Sonoda + Murata Unbounded, admissible 𝐿1 𝑅𝑑 , 𝐿2 𝑅𝑑

is any compact set.

Taking 𝑚 → ∞, we can approximate “any function” with “any precision.”

can be sigmoid or ReLU.

Ref：園田, “ニューラルネットの 積分表現理論”, 2015.



Adaptivity of deep learning
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“Adaptivity”

• Deep learning shows good performances in 
various tasks. 

→ “Adaptivity” of deep learning
➢ Besov space and its variants.

➢ Deep learning can outperform non-adaptive 
method and linear estimators.

➢ Extension of the theory to more general space.
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◼ Suzuki:  Adaptivity of deep ReLU network for learning in Besov and mixed 
smooth Besov spaces: optimal rate and curse of dimensionality. ICLR2019.

◼ Oono&Suzuki: Approximation and Non-parametric Estimation of ResNet-
type Convolutional Neural Networks. ICML2019.

◼ Hayakawa&Suzuki: On the minimax optimality and superiority of deep 
neural network learning over sparse parameter spaces. arXiv:1905.09195.

◼ Suzuki&Nitanda: Deep learning is adaptive to intrinsic dimensionality of 
model smoothness in anisotropic Besov space. arXiv:1910.12799, 2019.



Non-parametric regression 9

Non-parametric regression

where 𝜉𝑖 ∼ 𝑁(0, 𝜎2) and 𝑥𝑖 ∈ 0,1 𝑑 ∼ 𝑃𝑋(𝑋) (i.i.d.).

We estimate 𝑓o from 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 .

A similar argument can be applied to classification.

Estimation error:



Relation to existing work 10

Hölder Besov
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[Schmidt-Hieber, 2018]
[Yarotsky, 2017]
Deep learning with ReLU
activation achieves minimax 
rate in Hölder space:

[Suzuki, 2019]
Minimax rate in Besov space:

Kernel method (linear est.):

• [Schmidt-Hieber, 2018]:
composition of Holder.

• [Schmidt-Hieber, 2019] 
[Nakada&Imaizumi, 2019]: 
Low dim structure.

( : intrinsic dim.)

[Suzuki&Nitanda, 2019]
Minimax rate:

Kernel method (linear est.):

Anisotropic Besov



Two quantities

• Smoothness

• Dimensionality
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Smoothness 12

[Suzuki:  Adaptivity of deep ReLU network for learning in Besov and mixed smooth 
Besov spaces: optimal rate and curse of dimensionality. ICLR2019]

In machine learning, there appears various types of functions:

Bump Discontinuous

Difficult Easy

Uniformly smooth

If we overly adapt to bump, the model becomes unnecessarily large. → overfitting.
If we adapt to smooth part, bump can not be estimated. → underfitting.

“Adaptivity” is important

Theorem

Deep learning can achieve the minimax optimal rate
to estimate functions in the Besov space (𝐵𝑝,𝑞

𝑠 ).
(DL can adaptively estimate various types of functions.)



Convergence rate comparison
(smoothness)
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≫

(𝑛: sample size, 𝑝: uniformity of smoothness, 𝑠: smoothness)

fine coarsecoarseUniform granularity

Linear method
(e.g., kernel method)

Deep learning

e.g., kernel ridge regression:

Linear estimator (shallow method)

Sub-optimal

Deep learning

Optimal



Dimensionality

• High dimensional data

→ Curse of dimensionality
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Low dimensionality of the true function:

• The true function can be very smooth (constant) in several directions.

• Data is usually distributed on a low-dimensional sub-manifold.

The estimator should find in which 
direction the true function is smooth.

Theorem

Deep learning is minimax-optimal 
also in the anisotropic Besov space.



Convergence rate comparison
(dimensionality)
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≫

(𝑛: sample size, 𝑠: smoothness)

Linear estimator (shallow method)

Sub-optimal

Deep learning

Optimal

Linear estimator can not find 
smooth directions.
(lack of feature extraction ability)



Smoothness

Hölder, Sobolev, Besov space 16

0

Spatial homogeneity
of smoothness 



Relation between the spaces 17
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• Continuous regime:

• 𝐿𝑟-integrability：

•



• Discontinuity:
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• Spatial inhomogeneity of smoothness: small 𝑝



Connection to wavelet 20

Sparse coefficients → spatial inhomogeneity of smoothness
(non-convexity)

k=0

k=1

k=2

k=3

Resolution j=1

j=1 j=2

j=1 j=2 j=3 j=4

𝛼0,1

𝛼1,1 𝛼1,2

𝛼2,1 𝛼2,4𝛼2,3𝛼2,2



Deep learning model

• Activation function is ReLU

21

• Depth：
• Width：
• Sparsity：
• Norm bound：

Set of deep NN models



Approximation in Besov space 22

For an integer N, let depth , width , sparsity , norm bound be

Approximation ability of deep neural network

Then, deep NN can approximate elements in Besov space as

(𝐿𝑟-integrable)

• Assume 0 < 𝑝, 𝑞, 𝑟 ≤ ∞, 0 < 𝑠 < ∞, and following condition:

• is an integer s.t. 𝑠 < min{𝑚,𝑚 − 1 + 1/𝑝} ．

Petrushev (1998): 𝑝 = 𝑟 = 2, ReLU is excluded (𝑠 ≤ 𝑘 + 1 + (𝑑 − 1)/2)．
Pinkus (1999), Mhaskar (1996): 𝑝 = 𝑟 and 1 ≤ 𝑝, ReLU activation is excluded．



Small 𝑝

Comparison 23

Under the condition                             , we have

• For 𝑝 = 𝑞 = ∞，it is reduced to Yarotsky (2016) (Hölder space)

• Adaptive nonlinear approx. must be used (Dung, 2011)

Linear approx. (Linear width)：

Non-adaptive approx.（N-term approx., Kolmogorov width）：

This difference does not appear for Hölder space

• Adaptivity of deep NN
• Good feature extractor

𝑝 ≠ 𝑟
is important



Related work 24



Estimation error analysis

• Least squares estimator
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where (clipping)．

and .

Then, by setting                    , we have

Theorem (estimation error)

For 𝑝 = 𝑞 = ∞，it is reduced to Schmidt-Hieber (2017).

,Suppose



Linear estimator 26

Examples
• Kernel ridge estimator
• Sieve estimator
• Nadaraya-Watson estimator
• k-NN estimator

Linear estimator: an estimator which is linear to 𝑦𝑖 𝑖=1
𝑛 .

Linear

Kernel ridge regression:

“Shallow” method



Comparison to other methods

• Linear estimators
(Kernel ridge estimator，Sieve estimator，Nadaraya-Watson, ...)
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• Deep learning

(Donoho & Johnstone, 1994)

When is small ( <2), deep learning dominates
→ Spatial inhomogeneity of smoothness
（adaptivity to produce appropriate bases）

There appears 
difference when 
𝑝 < 2

c.f., piece-wise smooth function: Imaizumi&Fukumizu, 2018.



Intuition 28

Coefficient Basis

Pre-specified: Non-adaptive method
➢ Kernel ridge regression, ....

Estimated: Adaptive method
➢ Deep learning, sparse estimator, ....

Adaptive method
(deep)

Difference between deep and sparse learning:

• Sparse: 
Choose important bases from a pre-specified 
set of bases.

• Deep: 
Construct bases directly.



Why does this difference happen? 29

With additional conditions, it can be extended to “Q-hull.”

[Hayakawa&Suzuki: 2019][Donoho & Johnstone, 1994]



Simple example 30

→ Its convex hull includes the functions of bounded variation.

Deep learning： O
1

𝑛

[Hayakawa&Suzuki: 2019]



Examples (1) 31

(Schmidt-Hieber, 2018)

is a univariate smooth function.

• Low dimensional feature extractor

Deep Wavelet series estimator
: suffers from curse of dim.

Dim. reduction

where 𝑅𝑘 is a region with smooth boundary and ℎ𝑘 is a smooth function.

• Piece-wise smooth function (Imaizumi & Fukumizu, 2018)

➢ Deep is better than a kernel method (linear estimator). 



Example (2)

• Reduced rank regression

32

where and ．

Comparison of accuracy

Low rank: non-convex

Convex hull of the low rank model is full-rank.

(LS, Ridge reg)



Curse of dimensionality
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Curse of dimensionality

Estimation error bound：

Approximation error bound :

→ Curse of dimensionality

34



Anisotropic Besov space 35

Non-smooth

Very smooth

Deep

• Curse of dimensionality is 
avoided.

• Minimax optimal.

[Suzuki&Nitanda: Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic 
Besov space. arXiv:1910.12799, 2019.]

[Ibragimov & Khas’minskii (1984), 
Nyssbaum (1983, 1987), Kerkyacharian et 
al. (2001)]



Deep composition model 36

: included in an anisotropic Besov space (𝐵𝑝,𝑞
𝛽(ℓ)

).

Theorem

Deep learning This is minimax optimal.

Coordinate in the manifold
(feature extractor)

Example:



Example 37

constant

• The true function varies only 
one direction in the manifold.

• Invariant against noise injection
to other directions.

Intrinsic dimensionality: 𝑑 = 1

c.f., Manifold regression: 
➢ Classic method: Yang & Dunson (2016), Bickel & Li (2007), Yang & Tokdar (2015)
➢ Deep learning: Nakada & Imaizumi (2019), Schmidt-Hieber (2019)

Deep

Smoothness: 

Naïve evaluation: 𝑛−
2𝑠

2𝑠+𝑑

Data on smooth manifold



Comparison to linear estimator 38

𝑓∘ depends only 𝐷-dimensional subspace.

(𝑛
−

2𝑠

2𝑠+𝑑 when 𝐷 =
𝑑

2
and 𝑝 = 1)

Deep Linear estimator

≪

(𝑛
−

2𝑠

2𝑠+𝑑/2 when 𝐷 =
𝑑

2
)

Deep can ease curse of dim.,
but linear estimators directly 
suffers from curse of dim. 



Summary

Adaptivity of deep learning

• The ReLU-DNN has high adaptivity to shape of the target 
functions (spatial inhomogeneity of smoothness).

• DNN outperforms non-adaptive methods.

39

[Anisotropic Besov]

Deep learning Sparse estimation in 
infinite dim. space

≃

[Besov]


