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Studying the « expressivity » of DNNs

B DNN = rich architecture to implement functions

N f@ : Rd — Rk parameterized by 0 (weights & biases)

M Trained networks M Designed networks
B e.d. goal = regression B e.g. goal = solve LASSO
fé (ZB) A 4:(Z‘X — ZB) f9< ) > argmm Lz — Aa|)* + M||ax
) typically found using B typically prgximal iterations
stochastic gradient descent: m learned variant LISTA
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Studying the « expressivity » of DNNs

B DNN = rich architecture to implement functions

N f@ : Rd — Rk parameterized by 0 (weights & biases)

M Trained networks M Designed networks
B e.d. goal = regression B e.g. goal = solve LASSO
fé(ﬂ?) A 4:(Z‘X — ZIZ) f9< ) > argmeHaz—AaW—l—)\HaHl
m 0 typically found using = typically proximal iterations
stochastic gradient descent: m learned variant LISTA

NOT THIS TALK

| Best achievable error given a budget ?
B typical budget = #neurons or #connections

™ Role of “architecture” ?
B activation function(s), aka nonlinearity, e.g. RelLU
B depth, skip-connections ...

— ——
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Universal approximation property

B A celebrated result

®  One hidden layer enough to approximate arbitrarily well any continuous
function on any compact subset of RY, with any “sigmoid-like” activation

U Hornik, Stinchcombe, White 1989; Cybenko 1989

" Tradeoffs / Limitations?

B  One hidden layer sufficient ... with « enough » neurons
B Approximation rates wrt #neurons for “smooth” function

o Barron, DeVore, Mhaskar, and many more since the 1990s

®  Two hidden layers or more needed on non-compact domains in dimension d>1
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Why sparsely connected networks

B Definition: sparsity of network

B parameters 0 = weights & biases
HHHO = # connections <= n
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Why sparsely connected networks ?

B Definition: sparsity of network

B parameters 0 = weights & biases
HH”O = # connections <= n
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Why sparsely connected networks ?

B Definition: sparsity of network
B parameters 6 = weishts & biases

|0||o = # connections <= n N S PO R
. o\ A O C
B Reasonable proxy to estimate o7\ o ¢
mFlops . ‘Wﬁ

HBits & bytes

B Sample complexity, e.g. VC dimension
B see e.g. Bartlett et al 2017
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Why sparsely connected networks ?

B Definition: sparsity of network
B parameters 6 = weishts & biases

0|0 = # connections <= n VO
. .‘\ e Egif%}

B Reasonable proxy to estimate o7\ o ¢
B Flops . %

HBits & bytes

B Sample complexity, e.g. VC dimension
B see e.g. Bartlett et al 2017

B Example: fast linear transforms

B Activation ¢o = id - ANEARARRENY

B Butterfly structure for FFT, Hadamard  °
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Same sparsity - various network shapes

B Deep & narrow

n layers
—
o—0—"~0-"0 .. O—C

A » 2
M Shallow & wide n/2 neurons
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Same sparsity - various network shapes

M Deep & narrow

m . fully connected ! n layers

r———— ———

o—0-—-0-"0 . O—C

A » 2
M Shallow & wide n/2 neurons

m .. fully connected ! \O//
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Same sparsity - various network shapes

M Deep & narrow

m .. fully connected ! n layers

M ... and many more sparsely connected possibilities

A » 2
M Shallow & wide n/2 neurons

m .. fully connected ! \O/
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Approximation with sparse networks

M Approximation error: given f € L”(Q) where Q c R*

E,(f) = int | f = follp

B subject to sparse connection constraint ||?]jo <n

m + possibly other constraints (depth L(n), choice of activation, ...)

M Tradeoffs error / #connections
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example: FAuUST (learned fast transforms) vs SVD
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Direct vs inverse estimate

f is “smooth” (belongs to _
En(f)Sn

Sobolev / Besov / modulation
space, is “cartoon-like”; ...)
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Direct vs inverse estimate

f is “smooth” (belongs to _
En(f)Sn

Sobolev / Besov / modulation
space, is “cartoon-like”; ...)

B Optimal rate for these function classes:
®  known (nonlinear width)
m  achieved by deep networks :-)
B same as wavelets, curvelets

m cf e.g. work of Philip Grohs
and co-workers
m cf talk by Taiji Suzuki

L — E——
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Direct vs inverse estimate

Direct estimates

f is “smooth” (belongs to
Sobolev / Besov / modulation

space, is “cartoon-like”, ...) :
Inverse estimates ?

B Optimal rate for these function classes:
®  known (nonlinear width)
m  achieved by deep networks :-)
B same as wavelets, curvelets

¥ What can we say about f?
¥ Role of activation?
¥ Role of depth?

m cf e.g. work of Philip Grohs
and co-workers
m cf talk by Taiji Suzuki
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Agenda

B Why sparsely connected networks?

B Approximation spaces

B Role of activation function
B Role of skip connections

B Role of depth
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Notion of approximation space

M Definition: approximation class

A% = {f € LP(Q) : En(f) = O(n= )}

[fllae == [[fllp +SglpnO‘En(f)

B +variants with finer measures of decay

B class may depend on network “architecture”

B presence of « skip-connections »
m choice of activation function(s)
B fixed or varying number of layers L(n) = depth

B larger class = more expressive architecture
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Counting neurons vs connections

M Either define approximation error E,,(f) counting

(87

B #connections > weights

B or #neurons > Al rons

B Theorem: two families are intertwined

C floqﬁz

o) o)
C A weights

weights neurons
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Role of activation function 0

M (Very) degenerate cases exist
B Case of affine activation function :

m A% = space of all affine transforms

B Case of polynomial activation, with bounded depth:

= A (sub)space of polynomials
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Role of activation function 0

M (Very) degenerate cases exist
B Case of affine activation function :

m A% =space of all affine transforms

B Case of polynomial activation, with bounded depth:

= A (sub)space of polynomials

B There is a (pathological) analytic activation such

that with L=3 (two hidden layers) and n = 3d*(6d + 3)
connections, for any f € Lp([O 1]4),0 < p < oo

m Maiorov & Pinkus 99
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Role of activation function 0

M (Very) degenerate cases exist
B Case of affine activation function :

m A% =space of all affine transforms

B Case of polynomial activation, with bounded depth:

= A (sub)space of polynomials

B There is a (pathological) analytic activation such

that with L=3 (two hidden layers) and n = 3d*(6d + 3)
connections, for any f € Lp([O 1]4),0 < p < oo

m Maiorov & Pinkus 99 a __ TP d
B in other words, approximation class is trivial A% =1L ([Ov 1] )
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The case of spline activation functions
B Theorem 1

® On bounded domain
= |f O is continuous and piecewise polynomial of degree at most r, then A% (Q) C A“ (ReLUr)

=  Equality when activation is a spline (r-1 times continuously differentiable) and not a polynomial
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The case of spline activation functions
B Theorem 1

B On bounded domain
(8% (87 T
= If O is continuous and piecewise polynomial of degree at most r, then A (Q) C A (ReLU )
=  Equality when activation is a spline (r-1 times continuously differentiable) and not a polynomial

=  Moreover, the expressivity of ReLU powers saturates at r=2

if number of layers L(n) growth polynomially, with A (Q) = A (Q, L())

A%(ReLU) C A*(ReLU?) = A%(ReLU") C LP, Vr > 2
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The case of spline activation functions
B Theorem 1

B On bounded domain
(8% (87 T
= If O is continuous and piecewise polynomial of degree at most r, then A (Q) C A (ReLU )
=  Equality when activation is a spline (r-1 times continuously differentiable) and not a polynomial

=  Moreover, the expressivity of ReLU powers saturates at r=2

if number of layers L(n) growth polynomially, with A (Q) = A (Q, L())

A%(ReLU) C A*(ReLU?) = A%(ReLU") C LP, Vr > 2

Under the hood: ReLU?2 = ReLU?o...oReLU?
—_—
S
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Guidelines to choose an activation ?

M Expressive power ?
B the same (on compact domains) for

m RelLU

®  Any continuous piecewise affine function
= absolute value cf scattering transforms of Mallat and co-authors
= soft-thresholding cf Learned Iterative Shrinkage Thresholding, LISTA

= |eaky-RelLU, C-RelU, ...

B potentially larger for squared RelLU

B and the same as that of any spline of degree at least two
B potentially harder to train too ? vanishing / exploding gradients

What about architecture : skip-connections ?
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Role of skip-connections

M Strict networks B Generalized networks
B same activation at all neurons B two possible activations at
each neuron

Q / Qorid

B limitation: cannot lmplement
B skip-connections, >
B ResNets
B U-nets
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Role of skip-connections

M Strict networks B Generalized networks
B same activation at all neurons B two possible activations at
each neuron

Q Qorid

B limitation: cannot lmplement
B skip-connections, >
B ResNets
B U-nets

B Theorem 2: under weak assumptions the class A°
equipped With [|f|.a« := [[ /]l +supn®En(f) is

B a complete normed vector space;
m jdentical for strict & generalized networks

T— ——

B assumptions are satisfied by the ReLU and its powers, ReLU" , 7 > 1

B main property: can represent / approximate locally uniformly the identity
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Role of skip-connections

M Strict networks B Generalized networks
B same activation at all neurons B two possible activations at
each neuron

Q Qorid

B limitation: cannot lmplement
B skip-connections,
B ResNets
B U-nets

B Theorem 2: under weak assumptions the class A°
equipped With | |1« = | £, +supn® E, (1) is

B a complete normed vector space; — 1
m jdentical for strict & generalized networks

T—

B assumptions are satisfied by the ReLU and its powers, ReLUT > 1

B main property: can represent / approximate locally uniformly the identity
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Role of skip-connections

M Strict networks B Generalized networks
B same activation at all neurons B two possible activations at
each neuron

Y 0~ id

[ ] l]m]tat']nn- rannnt imMmnlamant ,—'q

[] Sk]p" . DO S = G RG Nz el ~Yga aN"do) of ~ a -
SUSSCOL L1 DG ) UNICTIAIIZCU CAPICOOIVOIICOOS
v.Vv ) y Y.V B ; y | . - r/' [ f n‘ ‘}' ) -
B U-nef with /7 without SKi JECUIITNICGCLIVIILD

B Theorem 2: under weak assumptions the class A°
equipped With | |1« = | £, +supn® E, (1) is

B a complete normed vector space; -
m jdentical for strict & generalized networks

B assumptions are satisfied by the ReLU and its powers, ReLU" , 7 > 1

B main property: can represent / approximate locally uniformly the identity
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Agenda

B Why sparsely connected networks ?
B Approximation spaces
B Role of depth

R. GRIBONVAL

4TU Meeting on Mathematics of Deep Learning, Nov 5th 2019



Depth and ReLU networks

M Property 1
B any realization of a ReLU-network is
continuous and piecewise (affine) linear

H d=1 111 ] H d>1

AN\
N

M Converse?
v d=1: any piecewise linear function is a * d>1: no longer true
realization of a ReLU-network with one , L
hidden layer B One hidden layer: realization not

compactly supported, not even
integrable (unless it is zero)

B Need at least two hidden layers to be
integrable
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Benefits of depth ?

B ReLU-networks in dimension d=1
B Can implement any piecewise affine function

®  For L=2 (one hidden layer), #breakpoints = #neurons %

®m  For large L (deep network) #breakpoints can be exponential in #neurons

m  Typical example = sawtooth function

o see e.g. Mhaskar & Poggio 2016, Telgarsky 2016

1.00
0.75 » : :
m composition of j hat functions

m implemented by (deep) network of depth jwith O(j) neurons / connections

m badly approximated by shallow network (needs exponentially many neurons)

0.50

0.25

0.00
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“Shallow” RelLU-nets have limited expressivity

B Theorem 3:

= Consider a nonzero C”(R?) function f

= with networks of depth bounded by L we have E,(f) > C(f)n™%~L, Vn

m |nother words: for a>2L  we have C°(R%) N A%(RelLU, L) = {0}

u Cf Theorem 4.5 in: Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions
using deep ReLU neural networks. arXiv preprint arXiv:1709.05289, 2017.

M Corollary:

= Consider a function family B such that C2(R%) N B # {0}

examples: any classical Sobolev or Besov space, of arbitrary positive smoothness;
the set of « cartoon-like » images

if BC A“(ReLU,L) then L > /2
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“Shallow” RelLU-nets have limited expressivity

B Theorem 3:

= Consider a nonzero C”(R?) function f

= with networks of depth bounded by L we have E,(f) > C(f)n™%~L, Vn

m |nother words: for a>2L  we have C°(R%) N A%(RelLU, L) = {0}

u Cf Theorem 4.5 in: Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions
using deep ReLU neural networks. arXiv preprint arXiv:1709.05289, 2017.

M Corollary:

= Consider a function family B such that C2(R%) N B # {0}

examples: any classical Sobolev or Besov space, of arbitrary positive smoothness;
the set of « cartoon-like » images

if BC A“(ReLU,L) then L > /2

V'~!>‘ P - “‘v \lA.‘/n ’ 'A---v-. 4 of &) -'no X - ol
vvitn ReLU: CAPICOSSIVILY ICQUINCS aeptn
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Role of depth

M Direct estimate for Besov spaces B Inverse estimate for Besov spaces

sparsely connected networks of bounded depth L
B Theorem 4 /

B> C A~ (ReLU", L) A%(ReLU", L) C Bo/LL/2]

u for a certain range of rates & u proved for d=1
u best possible Besov exponent, for any d

R. GRIBONVAL

4TU Meeting on Mathematics of Deep Learning, Nov 5th 2019




Role of depth

M Inverse estimate for Besov spaces

sparsely connected networks of bounded depth L
B Theorem 4 /

M Direct estimate for Besov spaces

B> C A~ (ReLU", L) A%(ReLU", L) C Bo/LL/2]

u for a certain range of rates & u proved for d=1

u best possible Besov exponent, for any d
B Proof sketch

M Direct result
®  Characterize Besov with wavelets
®  |mplement n-term wavelet expansion

with O(n)-sparsely connected network
of depth L=3
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Role of depth

sparsely connected networks of bounded depth L

B Theorem 4

M Direct estimate for Besov spaces M Inverse estimate for Besov spaces
ad A“ ( r 7,/9
B elLU", L) o r L) a/|L/2]
C RelLU, A%(RelU",L) C B
u for a certain range of rates & u proved for d=1

u best possible Besov exponent, for any d

B Proof sketch

B Direct result M Inverse result

®  Characterize Besov with wavelets m Lemma: if||8]o <n then fg is
piecewise poly with o(nl£/2l) pieces
®  Implement n-term wavelet expansion
with O(n)-sparsely connected network m  Apply Petrushev’s inverse estimate
of depth L=3 for free-knot splines
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B Theorem 4

Role of depth

M Direct estimate for Besov spaces

B* ¢ A*(ReLU", L)

for a certain range of rates

B Proof sketch

M Direct result

Characterize Besov with wavelets

Implement n-term wavelet expansion
with O(n)-sparsely connected network
of depth L=3
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sparsely connected networks of bounded depth L

M Inverse estimate for Besov spaces

A%(RelLU", L) Cc B/ LE/2

u proved for d=1
| best possible Besov exponent, for any d

M Inverse result

B Lemma: if||0)lo < n then fg is
piecewise poly with o(nl£/2l) pieces

B Apply Petrushev’s inverse estimate
for free-knot splines




Role of depth

sparsely connected networks of bounded depth L

B Theorem 4

M Direct estimate for Besov spaces B Inverse estimate for Besov spaces
ad A“ (R r 7,/9
B elLU", L) o r L) a/|L/2]
C ) A ReLU ] L C B
u for a certain range of rates & u proved for d=1

u best possible Besov exponent, for any d

B Proof sketch

B Direct result M Inverse result

®  Characterize Besov with wavelets B Lemma: if||flo < n then.to.d
piecewise poly witHl o(nlZ/2)pieces

®  |mplement n-term wavelet expansion

role of pairs of layers ?

with O(n)-sparsely connected network m  Apply Petrushev’s inverse estimate
of depth L=3 for free-knot splines
deeper DiNIN s €Xpresses rougner tunccions
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Under the hood

B Many of these results rely on ... counting pieces !
B For ReLU networks of depth L in dimension d=1

® if #neurons = n then jjpieces — O(nL_l)

® if #connections = n then ﬂpieces — O(n LL/QJ)

A
s
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Set theoretic picture
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Set theoretic picture

B Approximation rate « with
n-term wavelet expansions

B constructive (wavelet thresholding)

Bad
N
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Set theoretic picture

B Approximation rate « with
n-term wavelet expansions

B constructive (wavelet thresholding)

B Same rate, ReLU-networks
with n connections

B non-constructive
B more expressive
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B Same rate, ReLU-networks
with n connections

B non-constructive
B more expressive

R. GRIBONVAL

4TU Meeting on Mathematics of Deep Learning, Nov 5th 2019



Set theoretic picture

B Approximation rate « with
n-term wavelet expansions

B constructive (wavelet thresholding)

B Same rate, ReLU-networks
with n connections

B non-constructive
B more expressive

M For some functions in A
n-term wavelet expansions
(87
only reach the rate 1L/2]

sawtooth-l

« Small » subset ?

m ' = OnL/2 wavelets are
required to reach the rate & for

such functions LP (Q)
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Summary: Approximation with DNNs

B Role of architecture

=  Strict vs generalized networks: same expressiveness

= Challenge: expressiveness of plain vs skip connections / ResNets?

= main / only difference = ease of training with stochastic gradient ?
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Summary: Approximation with DNNs

B Role of architecture

=  Strict vs generalized networks: same expressiveness

= Challenge: expressiveness of plain vs skip connections / ResNets?

= main / only difference = ease of training with stochastic gradient ?

M Role of nonlinearity

= ReLU(?) = max(t,0) = ?as expressive as any piecewise affine activation
= ReLU”? as expressive as any continuous piecewise polynomial activation

= Expressiveness of Rel.U" “saturates” at r=2

= Challenge: training of ReLU%networks ? vanishing gradients ?
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Summary: Approximation with DNNs

B Role of architecture

=  Strict vs generalized networks: same expressiveness

= Challenge: expressiveness of plain vs skip connections / ResNets?

= main / only difference = ease of training with stochastic gradient ?

M Role of nonlinearity

= ReLU(?) = max(t,0) = ?as expressive as any piecewise affine activation
= ReLU”? as expressive as any continuous piecewise polynomial activation

= Expressiveness of Rel.U" “saturates” at r=2

= Challenge: training of ReLU%networks ? vanishing gradients ?

M Role of depth

=  Deep enough, any dimension: DNN strictly more expressive than wavelets
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Overall summary & perspectives

M First step: expressivity of different architectures

B .. spaces yet to be better characterized
B convolutional architectures, ResNets, U-nets, max-pooling ?

preprint: Approximation spaces of deep neural networks
https://arxiv.org/abs/1905.01208

see also Nonlinear Approximation and (Deep) ReLU Networks
[Daubechies, DeVore, Foucart, Hanin, Petrova, 2019]

B Next steps ?

B .. constructive approximation/training algorithms ?

= surely NP-hard

= assumptions needed for bounded complexity & provable performance
m .. guidelines for choosing a DNN architecture ?
m . statistical guarantees ?

see e.g. Nonparametric regression using deep neural networks with ReLU
activation function [J. Schmidt-Hieber, 2017]
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