

Gitta Kutyniok

Morten Nielsen

Approximation with deep networks

Rémi Gribonval - ENS Lyon & Inria - DANTE team remi.gribonval@inria.fr

preprint: https://arxiv.org/abs/1905.01208

Studying the « expressivity » of DNNs

DNN = rich architecture to implement functions

• $f_{ heta}: \mathbb{R}^d o \mathbb{R}^k$ parameterized by heta (weights & biases)

Trained networks

e.g. goal = regression

$$f_{\hat{\theta}}(x) \approx \mathbb{E}(Z|X=x)$$

 $\hat{\theta}$ typically found using stochastic gradient descent: NOT THIS TALK

Designed networks

e.g. goal = solve LASSO

$$f_{\hat{\theta}}(x) \approx \arg\min_{\alpha} \frac{1}{2} ||x - \mathbf{A}\alpha||^2 + \lambda ||\alpha||_1$$

- typically proximal iterations
- learned variant LISTA

Studying the « expressivity » of DNNs

DNN = rich architecture to implement functions

ullet $f_{ heta}: \mathbb{R}^d o \mathbb{R}^k$ parameterized by heta (weights & biases)

Trained networks

e.g. goal = regression

$$f_{\hat{\theta}}(x) \approx \mathbb{E}(Z|X=x)$$

 $\hat{\theta}$ typically found using stochastic gradient descent: NOT THIS TALK

Designed networks

■ e.g. goal = solve LASSO

$$f_{\hat{\theta}}(x) \approx \arg\min_{\alpha} \frac{1}{2} ||x - \mathbf{A}\alpha||^2 + \lambda ||\alpha||_1$$

- typically proximal iterations
- learned variant LISTA

Best achievable error given a budget ?

- typical budget = #neurons or #connections
- Role of "architecture" ?
 - activation function(s), aka nonlinearity, e.g. ReLU
 - depth, skip-connections ...

Universal approximation property

A celebrated result

- lacktriangle One hidden layer enough to approximate arbitrarily well any continuous function on any compact subset of \mathbb{R}^d , with any "sigmoid-like" activation
 - Hornik, Stinchcombe, White 1989; Cybenko 1989

Tradeoffs / Limitations?

- One hidden layer sufficient ... with « enough » neurons
- Approximation rates wrt #neurons for "smooth" function
 - Barron, DeVore, Mhaskar, and many more since the 1990s
- Two hidden layers or more needed on non-compact domains in dimension d>1

Definition: sparsity of network

 \blacksquare parameters θ = weights & biases

 $\|\theta\|_0 = \# \text{ connections } <= n$

Definition: sparsity of network

parameters θ = weights & biases

 $\|\theta\|_0 = \# \text{ connections } <= n$

- **Definition:** sparsity of network
 - lacksquare parameters heta = weights & biases
 - $\|\theta\|_0 = \# \text{ connections } \leq n$

- Reasonable proxy to estimate
 - Flops
 - ■Bits & bytes
 - Sample complexity, e.g. VC dimension
 - see e.g. Bartlett et al 2017

- **Definition:** sparsity of network
 - \blacksquare parameters θ = weights & biases
 - $\|\theta\|_0 = \# \text{ connections } <= n$

- Reasonable proxy to estimate
 - Flops
 - ■Bits & bytes
 - Sample complexity, e.g. VC dimension
 - see e.g. Bartlett et al 2017
- **Example:** fast linear transforms
 - Activation $\varrho = id$
 - Butterfly structure for FFT, Hadamard

Same sparsity - various network shapes

Deep & narrow

■ Shallow & wide

n/2 neurons

Same sparsity - various network shapes

Deep & narrow

Same sparsity - various network shapes

Deep & narrow

... and many more sparsely connected possibilities

Approximation with sparse networks

Approximation error: given $f \in L^p(\Omega)$ where $\Omega \subset \mathbb{R}^d$

$$E_n(f) = \inf_{\theta} \|f - f_{\theta}\|_p$$

- subject to sparse connection constraint $\|\theta\|_0 \le n$
- lacktriangle + possibly other constraints (**depth** L(n), choice of activation, ...)

Tradeoffs error / #connections

example: FAuST (learned fast transforms) vs SVD

Direct vs inverse estimate

f is "smooth" (belongs to Sobolev / Besov / modulation space, is "cartoon-like", ...) Direct estimates

$$E_n(f) \lesssim n^{-\alpha}$$

Direct vs inverse estimate

f is "smooth" (belongs to Sobolev / Besov / modulation space, is "cartoon-like", ...) Direct estimates

$$E_n(f) \lesssim n^{-\alpha}$$

- Optimal rate for these function classes:
 - known (nonlinear width)
 - achieved by deep networks :-)
 - same as wavelets, curvelets
 - cf e.g. work of Philip Grohs
 and co-workers
 - cf talk by Taiji Suzuki

Direct vs inverse estimate

f is "smooth" (belongs to Sobolev / Besov / modulation space, is "cartoon-like", ...) Direct estimates

Inverse estimates?

$$E_n(f) \lesssim n^{-\alpha}$$

- Optimal rate for these function classes:
 - known (nonlinear width)
 - achieved by deep networks :-)
 - same as wavelets, curvelets
 - cf e.g. work of Philip Grohs
 and co-workers
 - cf talk by Taiji Suzuki

- What can we say about f?
- Role of activation?
- Role of depth?

Agenda

- Why sparsely connected networks?
- Approximation spaces
 - Role of activation function
 - Role of skip connections
- Role of depth

Notion of approximation space

Definition: approximation class

$$A^{\alpha} := \{ f \in L^{p}(\Omega) : E_{n}(f) = O(n^{-\alpha}) \}$$

proto-norm

$$||f||_{A^{\alpha}} := ||f||_p + \sup_n n^{\alpha} E_n(f)$$

- +variants with finer measures of decay
- class may depend on network "architecture"
 - presence of « skip-connections »
 - choice of activation function(s)
 - fixed or varying number of layers L(n) = depth
- larger class = more expressive architecture

Counting neurons vs connections

- \blacksquare Either define approximation error $E_n(f)$ counting
 - \blacksquare #connections \longrightarrow $A_{\text{weights}}^{\alpha}$
 - or #neurons \longrightarrow $A_{\rm neurons}^{\alpha}$
- Theorem: two families are intertwined

$$A^lpha_{ t weights}$$

$$\subset A^lpha_{ t neurons}$$

$$A^{\alpha}_{\text{weights}} \subset A^{\alpha}_{\text{neurons}} \subset A^{\alpha/2}_{\text{weights}}$$

Role of activation function ϱ

- (Very) degenerate cases exist
 - Case of affine activation function:
 - \blacksquare A^{α} = space of all affine transforms
 - Case of polynomial activation, with bounded depth:
 - $\blacksquare A^{\alpha}$ = (sub)space of polynomials

Role of activation function ϱ

- (Very) degenerate cases exist
 - Case of affine activation function:
 - \blacksquare A^{α} = space of all affine transforms
 - Case of polynomial activation, with bounded depth:
 - $\blacksquare A^{\alpha}$ = (sub)space of polynomials
 - There is a (pathological) analytic activation such that with L=3 (two hidden layers) and $n=3d^2(6d+3)$ connections, for any $f\in L^p([0,1]^d), 0< p<\infty$

$$E_n(f) = 0$$

Maiorov & Pinkus 99

Role of activation function ϱ

(Very) degenerate cases exist

- Case of affine activation function:
 - \blacksquare A^{α} = space of all affine transforms
- Case of polynomial activation, with bounded depth:
 - $\blacksquare A^{\alpha}$ = (sub)space of polynomials
- There is a (pathological) analytic activation such that with L=3 (two hidden layers) and $n=3d^2(6d+3)$ connections, for any $f\in L^p([0,1]^d), 0< p<\infty$

$$E_n(f) = 0$$

- Maiorov & Pinkus 99
- in other words, approximation class is trivial

$$A^{\alpha} = L^p([0,1]^d)$$

The case of spline activation functions

Theorem 1

- On bounded domain
 - $\hbox{ If ϱ is continuous and $piecewise polynomial$ of degree at most r, then $A^{\alpha}(\varrho) \subset A^{\alpha}(\mathrm{ReLU}^r)$ }$
 - Equality when activation is a spline (r-1 times continuously differentiable) and not a polynomial

The case of spline activation functions

Theorem 1

- On bounded domain
 - If ϱ is continuous and *piecewise polynomial* of degree at most r , then $A^{\alpha}(\varrho) \subset A^{\alpha}(\mathrm{ReLU}^r)$
 - Equality when activation is a spline (r-1 times continuously differentiable) and not a polynomial
 - Moreover, the expressivity of ReLU powers saturates at r=2

if number of layers L(n) growth polynomially, with $A^{\alpha}(\varrho):=A^{\alpha}(\varrho,L(\cdot))$

$$A^{\alpha}(\operatorname{ReLU}) \subsetneq A^{\alpha}(\operatorname{ReLU}^2) = A^{\alpha}(\operatorname{ReLU}^r) \subsetneq L^p, \quad \forall r \geq 2$$

The case of spline activation functions

Theorem 1

- On bounded domain
 - If ϱ is continuous and *piecewise polynomial* of degree at most r , then $A^{\alpha}(\varrho) \subset A^{\alpha}(\mathrm{ReLU}^r)$
 - Equality when activation is a spline (r-1 times continuously differentiable) and not a polynomial
 - Moreover, the expressivity of ReLU powers saturates at r=2

if number of layers L(n) growth polynomially, with $A^{\alpha}(\varrho):=A^{\alpha}(\varrho,L(\cdot))$

$$A^{\alpha}(\operatorname{ReLU}) \subsetneq A^{\alpha}(\operatorname{ReLU}^2) = A^{\alpha}(\operatorname{ReLU}^r) \subsetneq L^p, \quad \forall r \geq 2$$

Under the hood:
$$\operatorname{ReLU}^{2^s} = \operatorname{\underline{ReLU}^2} \circ \ldots \circ \operatorname{\underline{ReLU}^2}$$

Guidelines to choose an activation?

- Expressive power ?
 - the same (on compact domains) for
 - ReLU
 - Any continuous piecewise affine function
 - absolute value
 - soft-thresholding
 - leaky-ReLU, C-ReLU, ...

cf scattering transforms of Mallat and co-authors cf Learned Iterative Shrinkage Thresholding, LISTA

- potentially larger for squared ReLU
 - and the same as that of any spline of degree at least two
 - potentially harder to train too? vanishing / exploding gradients
- What about architecture: skip-connections?

- Strict networks
 - **same** activation at all neurons

 ϱ

- limitation: cannot implement
 - skip-connections,
 - ResNets
 - U-nets

Generalized networks

two possible activations at each neuron

arrho or ${ t id}$

- Strict networks
 - **same** activation at all neurons

 ϱ

- limitation: cannot implement
 - skip-connections,
 - ResNets
 - U-nets

- Generalized networks
 - two possible activations at each neuron

arrho or ${ t id}$

- Theorem 2: under weak assumptions the class A^{α} equipped with $||f||_{A^{\alpha}} := ||f||_p + \sup n^{\alpha} E_n(f)$ is
 - a complete normed vector space;
 - identical for strict & generalized networks
 - assumptions are satisfied by the ReLU and its powers, $ReLU^r, r \geq 1$
 - main property: can represent / approximate locally uniformly the identity

- Strict networks
 - **same** activation at all neurons

 ϱ

- limitation: cannot implement
 - skip-connections,
 - ResNets
 - U-nets

- Generalized networks
 - two possible activations at each neuron

 ϱ or ${ t id}$

ightarrow Denoted A

- Theorem 2: under weak assumptions the class A^{α} equipped with $||f||_{A^{\alpha}} := ||f||_p + \sup n^{\alpha} E_n(f)$ is
 - a complete normed vector space;
 - identical for strict & generalized networks
 - assumptions are satisfied by the ReLU and its powers, $\text{ReLU}^r, r \geq 1$
 - main property: can represent / approximate locally uniformly the identity

- Strict networks
 - **same** activation at all neurons
- Generalized networks
 - **two** possible activations at each neuron

 ϱ

 ϱ or ${ t id}$

 \longrightarrow Denoted A

- limitation: cannot implement
 - skip- Suggests (TBC) uncha
 - ResNo
 - U-net
- Suggests (TBC) unchanged expressiveness
 - with / without skip-connections
- Theorem 2: under weak assumptions the class A^{α} equipped with $||f||_{A^{\alpha}} := ||f||_p + \sup n^{\alpha} E_n(f)$ is
 - a complete normed vector space;
 - identical for strict & generalized networks
 - assumptions are satisfied by the ReLU and its powers, $\text{ReLU}^r, r \geq 1$
 - main property: can represent / approximate locally uniformly the identity

Agenda

- Why sparsely connected networks ?
- Approximation spaces
- Role of depth

Depth and ReLU networks

Property 1

- any realization of a ReLU-network is continuous and piecewise (affine) linear
 - d=1

Converse?

✓ d=1: any piecewise linear function is a realization of a ReLU-network with one hidden layer

- ★ d>1: no longer true
- One hidden layer: realization not compactly supported, not even integrable (unless it is zero)
- Need at least two hidden layers to be integrable

Benefits of depth?

ReLU-networks in dimension d=1

- Can implement any piecewise affine function
 - For L=2 (one hidden layer), #breakpoints = #neurons

- For large L (deep network) #breakpoints can be exponential in #neurons
- **Typical example** = sawtooth function
 - see e.g. Mhaskar & Poggio 2016, Telgarsky 2016

- composition of *j* hat functions
- **implemented** by (deep) network of depth *j* with O(j) neurons / connections
- badly approximated by shallow network (needs exponentially many neurons)

"Shallow" ReLU-nets have limited expressivity

■ Theorem 3:

■ Consider a nonzero $C_c^3(\mathbb{R}^d)$ function f

- with networks of depth bounded by L we have $E_n(f) \geq C(f) n^{-2L}, \ \forall n$
- In other words: for $\alpha > 2L$ we have $C_c^3(\mathbb{R}^d) \cap A^{\alpha}(\text{ReLU}, L) = \{0\}$
- Cf Theorem 4.5 in: Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. arXiv preprint arXiv:1709.05289, 2017.

Corollary:

Consider a function family B such that $C_c^3(\mathbb{R}^d)\cap B\neq\{0\}$ examples: any classical Sobolev or Besov space, of arbitrary positive smoothness; the set of « cartoon-like » images

if
$$B\subset A^{\alpha}(\mathrm{ReLU},L)$$
 then $L>\alpha/2$

"Shallow" ReLU-nets have limited expressivity

■ Theorem 3:

Consider a nonzero $C^3_c(\mathbb{R}^d)$ function f

- with networks of depth bounded by L we have $E_n(f) \geq C(f) n^{-2L}, \ \forall n$
- In other words: for $\alpha > 2L$ we have $C_c^3(\mathbb{R}^d) \cap A^\alpha(\text{ReLU}, L) = \{0\}$
- Cf Theorem 4.5 in: Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. arXiv preprint arXiv:1709.05289, 2017.

Corollary:

Consider a function family B such that $C_c^3(\mathbb{R}^d)\cap B\neq\{0\}$ examples: any classical Sobolev or Besov space, of arbitrary positive smoothness; the set of « cartoon-like » images

if
$$B\subset A^{\alpha}(\mathrm{ReLU},L)$$
 then $L>\alpha/2$

With ReLU: "expressivity requires depth"

Role of depth

Theorem 4

Direct estimate for Besov spaces

$$B^{\alpha d} \subset A^{\alpha}(\mathrm{ReLU}^r, L)$$

lacksquare for a certain range of rates lpha

sparsely connected networks of bounded depth L

Inverse estimate for Besov spaces

$$A^{\alpha}(\mathrm{ReLU}^r,L) \subset B^{\alpha/\lfloor L/2 \rfloor}$$

- proved for d=1
- best possible Besov exponent, for any d

Role of depth

Theorem 4

■ Direct estimate for Besov spaces

$$B^{\alpha d} \subset A^{\alpha}(\mathrm{ReLU}^r, L)$$

lacksquare for a certain range of rates lpha

sparsely connected networks of bounded depth L

Inverse estimate for Besov spaces

$$A^{\alpha}(\mathrm{ReLU}^r,L) \subset B^{\alpha/\lfloor L/2 \rfloor}$$

- proved for d=1
- best possible Besov exponent, for any *d*

Proof sketch

- Direct result
 - Characterize Besov with wavelets
 - Implement n-term wavelet expansion with O(n)-sparsely connected network of depth L=3

Role of depth

Theorem 4

■ Direct estimate for Besov spaces

$$B^{\alpha d} \subset A^{\alpha}(\mathrm{ReLU}^r, L)$$

lacksquare for a certain range of rates lpha

sparsely connected networks of bounded depth L

Inverse estimate for Besov spaces

$$A^{\alpha}(\mathrm{ReLU}^r,L) \subset B^{\alpha/\lfloor L/2 \rfloor}$$

- proved for d=1
- best possible Besov exponent, for any *d*

Proof sketch

- Direct result
 - Characterize Besov with wavelets
 - Implement n-term wavelet expansion with O(n)-sparsely connected network of depth L=3

Inverse result

- **Lemma:** if $\|\theta\|_0 \le n$ then f_θ is piecewise poly with $O(n^{\lfloor L/2 \rfloor})$ pieces
- Apply Petrushev's inverse estimate for free-knot splines

Role of depth

Theorem 4

■ Direct estimate for Besov spaces

$$B^{\alpha d} \subset A^{\alpha}(\mathrm{ReLU}^r, L)$$

for a certain range of rates lpha

sparsely connected networks of bounded depth L

Inverse estimate for Besov spaces

$$A^{\alpha}(\mathrm{ReLU}^r,L) \subset B^{\alpha/\lfloor L/2 \rfloor}$$

- proved for d=1
- best possible Besov exponent, for any *d*

Proof sketch

- Direct result
 - Characterize Besov with wavelets
 - Implement n-term wavelet expansion with O(n)-sparsely connected network of depth L=3

- Inverse result
 - **Lemma:** if $\|\theta\|_0 \le n$ then f_θ is piecewise poly with $O(n^{\lfloor L/2 \rfloor})$ pieces
 - Apply Petrushev's inverse estimate for free-knot splines

deeper DNN

expresses rougher functions

Role of depth

Theorem 4

Direct estimate for Besov spaces

$$B^{\alpha d} \subset A^{\alpha}(\mathrm{ReLU}^r, L)$$

for a certain range of rates α

sparsely connected networks of bounded depth L

Inverse estimate for Besov spaces

$$A^{\alpha}(\mathrm{ReLU}^r,L) \subset B^{\alpha/\lfloor L/2 \rfloor}$$

- proved for d=1
- best possible Besov exponent, for any *d*

Proof sketch

- Direct result
 - Characterize Besov with wavelets
 - Implement n-term wavelet expansion with O(n)-sparsely connected network of depth L=3

- Inverse result
 - Lemma: if $\|\theta\|_0 \le n$ then f_0 is piecewise poly with $O(n^{\lfloor L/2 \rfloor})$ pieces

role of pairs of layers?

 Apply Petrushev's inverse estimate for free-knot splines

deeper DNN

expresses rougher functions

Under the hood

- Many of these results rely on ... counting pieces!
 - For ReLU networks of depth L in dimension d=1
 - if #neurons = *n* then

$$\sharp \mathtt{pieces} = \mathcal{O}(n^{L-1})$$

• if #connections = n then

$$\sharp \mathtt{pieces} = \mathcal{O}(n^{\lfloor L/2 \rfloor})$$

$$L^p(\Omega)$$

- Approximation rate α with n-term wavelet expansions
 - constructive (wavelet thresholding)

 $L^p(\Omega)$

- Approximation rate α with n-term wavelet expansions
 - constructive (wavelet thresholding)
- Same rate, ReLU-networks with *n* connections
 - non-constructive
 - more expressive

 $L^p(\Omega)$

- Approximation rate α with n-term wavelet expansions
 - constructive (wavelet thresholding)
- Same rate, ReLU-networks with *n* connections
 - non-constructive
 - more expressive

- Approximation rate α with n-term wavelet expansions
 - constructive (wavelet thresholding)
- Same rate, ReLU-networks with *n* connections
 - non-constructive
 - more expressive
- For some functions in A^{α} , n-term wavelet expansions only reach the rate $\frac{\alpha}{d|L/2|}$
 - $n' = \mathcal{O}(n^{d\lfloor L/2\rfloor}) \text{ wavelets are required to reach the rate } \alpha \text{ for such functions}$

Summary & perspectives

Summary: Approximation with DNNs

Role of architecture

- Strict vs generalized networks: same expressiveness
- Challenge: expressiveness of plain vs skip connections / ResNets?
- ⇒ main / only difference = **ease of training** with stochastic gradient?

Summary: Approximation with DNNs

Role of architecture

- Strict vs generalized networks: same expressiveness
- Challenge: expressiveness of plain vs skip connections / ResNets?
- → main / only difference = **ease of training** with stochastic gradient?

Role of nonlinearity

- ReLU $(t) = \max(t, 0) = t_+$ as expressive as any piecewise affine activation
- \blacksquare ReLU 2 as expressive as any continuous piecewise polynomial activation
- Expressiveness of ReLU^r "saturates" at r=2
- Challenge: training of ReLU²-networks? vanishing gradients?

Summary: Approximation with DNNs

Role of architecture

- Strict vs generalized networks: same expressiveness
- Challenge: expressiveness of plain vs skip connections / ResNets?
- → main / only difference = **ease of training** with stochastic gradient?

Role of nonlinearity

- ReLU $(t) = \max(t, 0) = t_+$ as expressive as any piecewise affine activation
- ReLU² as expressive as any continuous piecewise polynomial activation
- Expressiveness of ReLU^r "saturates" at r=2
- → Challenge: training of ReLU²-networks? vanishing gradients?

Role of depth

Deep enough, any dimension: DNN strictly more expressive than wavelets

Overall summary & perspectives

First step: expressivity of different architectures

- ... spaces yet to be better characterized
- convolutional architectures, ResNets, U-nets, max-pooling?

preprint: Approximation spaces of deep neural networks
https://arxiv.org/abs/1905.01208

see also Nonlinear Approximation and (Deep) ReLU Networks [Daubechies, DeVore, Foucart, Hanin, Petrova, 2019]

Next steps ?

- ... constructive approximation/training algorithms?
 - surely NP-hard
 - assumptions needed for bounded complexity & provable performance
- **under the second of the secon**
- ... statistical guarantees ?

see e.g. Nonparametric regression using deep neural networks with ReLU activation function [J. Schmidt-Hieber, 2017]