

Implicit regularization and acceleration in machine learning

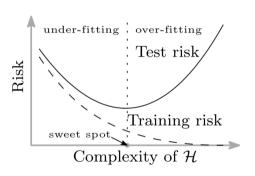
Lorenzo Rosasco

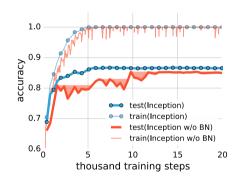
MaLGa- Machine learning Genova Center Università di Genova MIT IIT

Joint work with: N. Pagliana, MaLGa - DIMA - UniGe

Mathematics of Deep Learning - TU Delft

There seems to be a puzzle





Outline

Optimization for machine learning

Part I: Learning theory of (accelerated) optimization

Part II: More learning theory and some science of (accelerated) optimization Refined results: easy problems Refined results: hard problems

Optimization for machine learning

Training error

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i) + \lambda ||w||^2$$

Gradient methods

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma_t \frac{1}{n} \sum_{i=1}^n \nabla \ell(f_{\widehat{w}_t}(x_i), y_i) - 2\gamma_t \lambda \widehat{w}_t$$

Optimization for machine learning

Training error

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i) + \lambda ||w||^2$$

Gradient methods

$$\widehat{w}_{t+1} = \widehat{w}_t - \gamma_t \frac{1}{n} \sum_{i=1}^n \nabla \ell(f_{\widehat{w}_t}(x_i), y_i) - 2\gamma_t \lambda \widehat{w}_t$$

$$\lim_{t \to \infty} \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\widehat{w}_{t}}(x_{i}), y_{i}) + \lambda \|\widehat{w}_{t}\|^{2} = \min_{w \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell(f_{w}(x_{i}), y_{i}) + \lambda \|w\|^{2}$$

⇒ Go faster! ...but where?

Statistical machine learning

$$\frac{1}{n} \sum_{i=1}^{n} \ell(f_{w}(x_{i}), y_{i}) \approx \mathbb{E}_{x,y}[\ell(f_{w}(x), y)]$$

Test error

$$\mathbb{E}_{x,y}[\ell(f_{\widehat{\mathbf{w}}_t}^\top(x),y)]$$

Error measures

Generalization error

$$\frac{1}{n}\sum_{i=1}^{n}\ell(f_{\widehat{\mathbf{w}}_{t}}(\mathbf{x}_{i}),\mathbf{y}_{i}) - \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ell(f_{\widehat{\mathbf{w}}_{t}}(\mathbf{x}),\mathbf{y})]$$

Excess risk

$$\mathbb{E}_{x,y}[\ell(f_{\widehat{w}_t}(x),y)] - \min_{w \in \mathbb{R}^p} \mathbb{E}_{x,y}[\ell(f_w(x),y)]$$

Outline

Optimization for machine learning

Part I: Learning theory of (accelerated) optimization

Part II: More learning theory and some science of (accelerated) optimization Refined results: easy problems Refined results: hard problems

Least squares learning

Solve

$$\min_{w \in \mathbb{R}^p} \mathbb{E}_{x,y} [(w^\top \Phi(x) - y)^2]$$

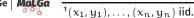
where $\Phi(x) \in \mathbb{R}^p$ and p can be infinite.

Gradient descent¹

$$\widehat{w}_{t+1} = \widehat{w}_t - \alpha \nabla \widehat{L}(\widehat{w}_t), \qquad \nabla \widehat{L}(w) = \frac{2}{n} \sum_{i=1}^n \Phi(x_i) (w^\top \Phi(x_i) - y_i)$$

with

$$\alpha = \frac{1}{\sup_{x} \|\Phi(x)\|^2}.$$



Accelerated iterations

Heavy-ball

$$\widehat{w}_{t+1} = \widehat{w}_t - \alpha_t \nabla \widehat{L}(\widehat{w}_t) + \beta_t (\widehat{w}_t - \widehat{w}_{t-1}).$$

Accelerated iterations

Heavy-ball

$$\widehat{w}_{t+1} = \widehat{w}_t - \alpha_t \nabla \widehat{L}(\widehat{w}_t) + \beta_t (\widehat{w}_t - \widehat{w}_{t-1}).$$

In particular² for $\nu > 0$

$$\alpha_t = \frac{1}{\sup_x \|\Phi(x)\|^2} \frac{4(2t+2\nu-1)(t+\nu-1)}{(t+2\nu-1)(2t+4\nu-1)}, \qquad \beta_t = \frac{(t-1)(2t-3)(2t+2\nu-1)}{(t+2\nu-1)(2t+4\nu-1)(2t+2\nu-3)}.$$

Accelerated iterations

Heavy-ball

$$\widehat{w}_{t+1} = \widehat{w}_t - \alpha_t \nabla \widehat{L}(\widehat{w}_t) + \beta_t (\widehat{w}_t - \widehat{w}_{t-1}).$$

In particular² for $\nu > 0$

$$\alpha_t = \frac{1}{\sup_x \|\Phi(x)\|^2} \frac{4(2t+2\nu-1)(t+\nu-1)}{(t+2\nu-1)(2t+4\nu-1)}, \qquad \beta_t = \frac{(t-1)(2t-3)(2t+2\nu-1)}{(t+2\nu-1)(2t+4\nu-1)(2t+2\nu-3)}.$$

Nesterov's acceleration

$$\widehat{w}_{t+1} = \widehat{v}_t - \alpha \nabla \widehat{L}(\widehat{v}_t), \qquad \widehat{v}_t = \widehat{w}_t + \beta_t (\widehat{w}_t - \widehat{w}_{t-1}).$$

In particular for $\beta > 1$

$$\alpha = \frac{1}{\sup \|\Phi(x)\|^2}, \qquad \beta_t = \frac{t-1}{t+\beta}.$$

Basic result

Let

$$L(w) = \mathbb{E}_{x,y}[(w^{\top}x - y)^2],$$

$$\mathsf{L}(w_*) = \min_{w \in \mathbb{R}^p} \mathsf{L}(w)$$

Theorem

Assume $\|\Phi(x)\|$, $|y| \le 1$ a.s.. Then w.h.p.

$$L(\widehat{w}_t) - L(w_*) \lesssim \frac{1}{t} + \frac{t}{n}$$

for GD, whereas

$$L(\widehat{w}_t) - L(w_*) \lesssim \frac{1}{t^2} + \frac{t^2}{n}$$

for Heavy-ball and Nesterov acc.

Basic result (cont.)

Corollary

For GD, if $t = \sqrt{n}$,

$$L(\widehat{w}_t) - L(w_*) \lesssim \frac{1}{\sqrt{n}}.$$

The same bound hold for for Heavy-ball and Nesterov acc. for $t=\mathfrak{n}^{1/4}$.

Numerical illustration

Parameters of the plot in the left: space size $N=10^4$, training points $n=10^2$, $\gamma=1$, noise $\sigma=0.5$, step-size $\alpha\ll 0.9/\max(eigs(\widehat{K}))\leqslant \frac{1}{\sup_{\|\widehat{\Phi}(x)\|\|^2}}$.

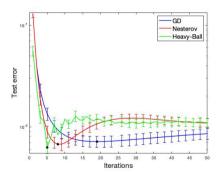


Figure: Simulated data (ill-conditioned LS)

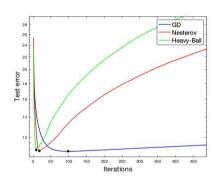


Figure: Pumadyn8nh dataset (n = 8192, d = 7), Gaussian kernel width1.2.

Remarks

- **Early stop after** \sqrt{n} iteration! Iterations control complexity/stability.
- Acceleration can suffer from instability.
- ► Iterates converge to minimal norm minimizer (implicit bias).
- ► Training error/generalization play no role.
- ▶ Proof based on spectral filtering/calculus (Engl et al. '96, Neubauer '16)

Remarks

- **Early stop after** \sqrt{n} iteration! Iterations control complexity/stability.
- Acceleration can suffer from instability.
- ► Iterates converge to minimal norm minimizer (implicit bias).
- ► Training error/generalization play no role.
- ▶ Proof based on spectral filtering/calculus (Engl et al. '96, Neubauer '16)

We can see other behaviors in practice: explanation?

Outline

Optimization for machine learning

Part I: Learning theory of (accelerated) optimization

Part II: More learning theory and some science of (accelerated) optimization

Refined results: easy problems Refined results: hard problems

Do we like assumptions or not?

- "Simple and Almost Assumption-Free Out-of-Sample Bound for ..."
- ► "...a more ambitious open problem (to find good bounds) is to find the correct characterization of "easiness" for real-world problem..."

Do we like assumptions or not?

- ▶ "Simple and Almost Assumption-Free Out-of-Sample Bound for ..."
- ► "...a more ambitious open problem (to find good bounds) is to find the correct characterization of "easiness" for real-world problem..."

We can see other behaviors in practice: explanation?

Refined assumption: easy problems

$$\Sigma = \mathbb{E}_x[\Phi(x)\Phi(x)^\top] \qquad h = \mathbb{E}_{x,y}[\Phi(x)y]$$

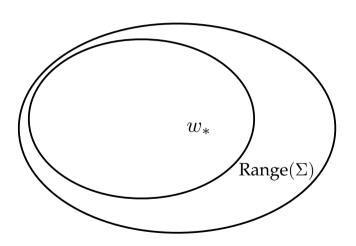
Optimality condition

$$L(w_*) = \min_{w \in \mathbb{R}^p} \mathbb{E}_{x,y}[(w^\top \Phi(x) - y)^2] \quad \Leftrightarrow \quad \Sigma w_* = h.$$

Error/source condition

$$w_* \in \mathsf{Range}(\Sigma^s), \qquad s \in [0, \infty)$$

Easy problems illustrated



Refined results

Theorem

Under the error/source condition, assume $\|\Phi(x)\|$, $|y| \le 1$ a.s.. Then w.h.p.

$$L(\widehat{w}_t) - L(w_*) \lesssim \frac{1}{t^{2s+1}} + \frac{t}{n}$$

with $s \in [0, \infty)$ for GD, whereas

$$L(\widehat{w}_t) - L(w_*) \lesssim \frac{1}{t^{2(2s+1)}} + \frac{t^2}{n}$$

with $s \in [0, \nu)$ for Heavy-ball and with s = 0 for Nesterov acc.

Refined results (cont.)

Corollary

For GD with $s \in [0, \infty)$, choosing $t = n^{\frac{1}{2s+2}}$,

$$L(\widehat{w}_t) - L(w_*) \lesssim \frac{1}{n^{\frac{2s+1}{2s+2}}}.$$

The same bound hold for Heavy-ball with $s \in [0.\nu)$ and for Nesterov acc. with s=0 choosing $t=\sqrt{n^{\frac{1}{(2s+2)}}}$.

Acceleration can suffer from slow rates for easy problems.

Numerical illustration

Parameters: space size $N=10^4$, training points $n=10^2$, $\gamma=1$, noise $\sigma=0.2$, step-size $\alpha=0.9/\max(\text{eigs}(\widehat{K}))\leqslant \frac{1}{\sup_x\|\Phi(x)\|^2}$.

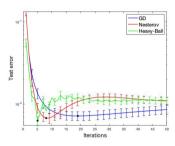


Figure: s = 0

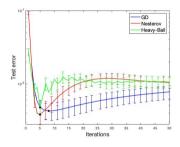


Figure: s = 3/2

Numerical illustration

Parameters: space size $N=10^4$, training points $n=10^2$, $\gamma=1$, noise $\sigma=0.5$, step-size $\alpha=0.9/\max(eigs(\widehat{K}))\leqslant \frac{1}{\sup_x\|\Phi(x)\|^2}$.

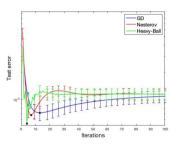


Figure: s = 0

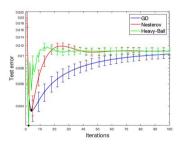


Figure: s = 50

So far

► Large function class/simple target function: instability and slow rate?

Gradient descent might catch up.

What about small function class/complex target function?

Refined assumption: hard problems

Let

$$\overline{\Sigma} f(x) = \mathbb{E}_x [\Phi(x) f(x)]$$

General source condition

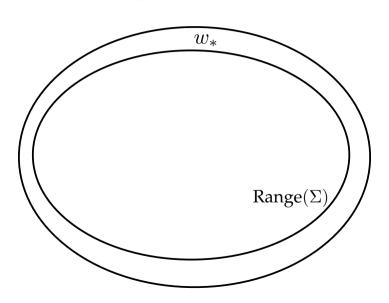
$$\mathbb{E}[y|x] \in \text{Range}(\overline{\Sigma})).$$

Eigendecay

$$\sigma_{\mathbf{j}}(\Sigma) \sim e^{-\mathbf{j}}$$
.

Example: Learn a smooth (Sobolev) function with a Gaussian kernel (fixed width!).

Hard problems illustrated



Refined results

Theorem

Under the error/source condition, assume $\|\Phi(x)\|$, $|y| \le 1$ a.s.. Then w.h.p.

$$L(\widehat{w}_t) - L(w_*) \lesssim \frac{1}{\log(t)} + \frac{\log(t)}{n} + \frac{t}{n^2}$$

with for GD, whereas for

$$L(\widehat{w}_{\mathsf{t}}) - L(w_*) \lesssim \frac{1}{2\log(\mathsf{t})} + \frac{2\log(\mathsf{t})}{\mathsf{n}} + \frac{\mathsf{t}^2}{\mathsf{n}^2}$$

for Heavy-ball and for Nesterov acc.

Refined results (cont.)

Corollary

For GD choosing $t \sim n^{\alpha}$, $\alpha < 2$

$$L(\widehat{w}_t) - L(w_*) \lesssim \frac{1}{\log(n)}.$$

The same bound hold for Heavy-ball and for Nesterov acc. with $t \sim \sqrt{n^{\alpha}}$, $\alpha < 2$.

Numerical illustration

Parameters: space size $N=10^4$, training points $n=10^2$, $\gamma=1$, source condition logarithmic, noise $\sigma=0.2$, step-size $\alpha=0.9/\max(\text{eigs}(\widehat{K}))\leqslant \frac{1}{\sup_{\kappa}\|\Phi(\kappa)\|^2}$.

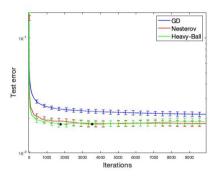


Figure: Simulation of the test error in the case $\sigma_i \approx e^{-\gamma i}$

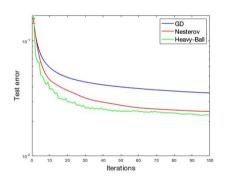


Figure: Simulation of the test error in the case $\sigma_i \approx e^{-\gamma i}$ (zoom)

ML Science

The behavior of an algorithms depending on modeling assumptions.

Which assumptions are good depends on data.

Looking at different assumptions allows to explaning different empirical behaviors.

Wrapping up

- Optimization for machine leads to new algorithms: implicit regularization.
- Different behaviors depending on easy/hard learning problems.
- TBD: high/low dimension and SNR, classification; nonlinear parameterization...

$$L(\widehat{w}_{t}) - L(w_{*}) \lesssim \frac{1}{\log(t)} + \frac{\log(t)}{n} + \frac{t}{n^{2}}$$
?

UniGe | More Machine learning center in Genova: PhD positions available!

Outline

Spectral filtering

Spectral filtering

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}, \qquad \widehat{h} = \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) y_i$$

GD Filter

$$\widehat{w}_{t+1} = \widehat{w}_t - \alpha \nabla \widehat{L}(\widehat{w}_t) = \alpha \sum_{i=0}^{t} (I - \alpha \widehat{\Sigma})^i \widehat{h}$$

For t large,

$$g_{t}(\widehat{\Sigma}) = \alpha \sum_{i=0}^{t} (I - \alpha \widehat{\Sigma})^{j} \approx \widehat{\Sigma}^{-1}$$

$$g_{\mathbf{t}}(\widehat{\Sigma}) = \alpha \sum_{i=0}^{\mathbf{t}} (I - \alpha \widehat{\Sigma})^{j} \approx \widehat{\Sigma}^{-1}$$

Spectral filters

Definition

 $\{g_{\lambda}\}_{\lambda\in\{0,1]}$ is a spectral filtering function if there exists E, F₀, q, $(F_s)_{s=0}^q<\infty$ s.t., for any $\lambda\in\{0,1]$

(i)

$$\sup_{\sigma\in(0,\kappa^2]}|g_\lambda(\sigma)|\leqslant\frac{E}{\lambda}\;.$$

(ii) Let
$$r_{\lambda}(\sigma) = 1 - \sigma g_{\lambda}(\sigma)$$
, for $s \in [0, q)$

$$\sup_{\sigma \in (0,\kappa^2]} |r_{\lambda}(\sigma)\sigma^s| \leqslant F_s \lambda^s \ .$$

The parameter q is called qualification.

Nicoló Pagliana, Lorenzo Rosasco, Implicit Regularization of Accelerated Methods in Hilbert Spaces, arxiv.

