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Motivation



Recognition by components siederman, 1987 T U/@

Low-level features
(e.g. local surfaces)

features can appear at arbitrary .
locations, angles, and scales

Mid-level features arranged at
relative angles and displacements
form high-level features such as
bifurcations

&
/s

Low-level features arranged at
relative angles and displacements
form mid-level features e

Mid-level features
(e.g. vessel segments) Ty,

Group theory: Symmetries and relative information processing

Such reasoning motivates Hinton, Krizhevsky & Wang, 2011
related work on capsule nets Lenssen, Fey & Libuschewski, 2018 4



Aim: Build Al systems that are equipped with geometric understanding
* Do not have to learn geometric structure and relations

* Are data-efficient by exploiting symmetries

* High representation power by recognition by components




Group theory (preliminaries)



(Symmetry) Groups TU/e

A group (G, ) is a set of elements & equipped with a group product -, a binary
operator, that satisfies the following four axioms:

© Closure: Given two elements g and h of G, the product (¢ - h) is also in G.

© Associativity: For g, h,i € G the product - is associative, i.e., g- (h-i) = (g- h) - 1.

© Identity element: There exists an identity element e € ¢ such that
e-g=g¢g-e=gforany g€ G.

© Inverse element: For each g € G there exists an inverse element ¢! € G such

thatg ' -g=¢g-g ! =e.



The translation group (R2, +)

TU/e

The translation group consists of all possible translations in R? and is equipped

with the group product and group inverse:

with g = x, ¢ = X' € R?.

g-q

=X + X’

= —X.




The roto-translation group SE/(2) e fucideanotenarowe T fa

The group SE(2) consists of the coupled space R? x S of positions (translations)
in R?, and orientations (rotations) S!, and is equipped with the group product and

group inverse:

g9 =(x.Ry)- (x'.Rygr) = (Rgx' + x, Rgg)
g =(-R;'x,R; ).
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Representations transfer group structure to images TU/e

Set of points v Convolution kernel
{ ) C (R f € La(R?)
91,92, . .. C( 7+) 2
, G—La(X _
A linear operator L 2(X) that transforms functions on some space X

and parameterized by group elements g € (G is called a representation of
the group if it caries the group structure in the following way

£y 7T () = £

10



Representations transfer group structure to images TU/e

Example:
L

f 2D image g
(G the group SE(2)
»Cg roto-translation

@\ ~

A linear operator Lg that transforms functions on some space X
and parameterized by group elements g € (G is called a representation of
the group if it caries the group structure in the following way

Ly (Lg(f)) — Eh-g(f)

’6
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Transforming SE(2) descriptors TU/e

555(2)%%(55(2))
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CNNs and G-CNNs

via group representations



Cross-correlations

Cross-correlation:

(kg2 f)(x) = [ k(x" — x) f(x/)dx’
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Group equivariance TU/e
Example: Convolutions are equivariant w.r.t. the translation group
4 (kx £)(x) = (L% 7k, e

P

N

[,152 — Lo (R?) J J [,IEQ Lo (R?)

Representation of the
translation group

N




Group equivariance TU/e

Example: Convolutions are generally not equivariant w.r.t. roto-translations.

]R Lo (R?
k*f) R Py
\ Representation of the
translation group
SE(2)—>]L2 (R?)

LSE(2)—>]L2 (R?)

")

Representation of the
roto-translation group




Roto-translation equivariant cross-correlations TU/e

Lifting correlations: Representation of the roto-translation group!

/
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Roto-translation equivariant cross-correlations TU/e

Lifting layer

)

£G—>L2(R2) I <— Representations of SE(2) —> I LG_>]LQ(G)
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Roto-translation equivariant cross-correlations TU/e

Group correlations:

(kx f)(x) = (L5 PP EED g ) smay= (Ln 2R pI0RSLaSERD L ey oo

translation rotation

planar rotation
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Architecture for rotation invariant patch classification TU/e

Bekkers, Lafarge et al. 2018
I:{> “normal” (0) vs “mitotic” (1)
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Results TU/e

Bekkers, Lafarge et al. 2018

G-CNNs outperform CNNs (matched in network complexity):
* Even when training the classical CNNs with and G-CNNs without data-augmentation

* G-CNNs do not have to spend valuable network capacity on learning geometric
structure -> focus entirely on learning effective representations




Related work on group equivariant networks TU/e

Based on the overview given in Cohen-Geiger-Weiler 2018

Group convolution networks Steerable filter networks
(domain extension) (co-domain extension)

LeCun et al 1990 Z? translation networks

Worrall et al. 2017 SE(2) irrep
Mallat et al. 2013, 2015  SE(2) Scattering transform & SVM Marcos et al. 2017 SE(2) vector field networks
Bekkers et al. 2014-2018 SE(2) via B-splines, 2 layer G-CNN

Kondor 2018 SE(3) irrep, N-body nets
Cohen-Welling 2016 p4m via 90° rotations + flips + theory! | Thomas et al. 2018 SE(3) irrep, point clouds
Dieleman et al. 2016 p4m via 90° rotations + flips Weiler et al. 2018 SE(3) irrep
Weiler et al. 2017 SE(2) via circular harmonics Esteves SO(3)/SO(2) irrep
Zhou et al. 2017 SE(2) via bilinear interpolation Kondor-Trivedi 2018 SO(d) irrep (on compact
Bekkers et al. 2018 SE(2) via bilinear interpolation quotient sp.)
Hoogeboom et al. 2018  S(2,6) hexagonal grids
Winkels-Cohen 2018 SE(3,N) + m 90° rotations + flips Continuous
Worrall-Brostow 2018 SE(3,N) 90° rotations )

Discrete

Cohen et al. 2018 SO(3) via spherical harmonics 22




Can we use the theory in practice for other groups? TU/e

G-CNNs are currently limited to compact 8“V
Discrete <> no interpolation

Continuous <> Fourier theory on groups

Why this limitation? Available tools. We need to

implement transformations (and sampling) of the
convolution kernels.

Solution? A new flexible class of basis functions that
enables to implement G-convs for arbitrary Lie groups.

B-Splines on Lie groups

HexaConv
Hoogeboom, Peters, Cohen, Welling — ICLR 2018

Circular/Spherical harmonics
Worall, Garbin, Turmukhambetov, Brostow — CVPR 2017

m=1 m=2
f g E
7 80)

m=-—2 m=-1 m=20

Imaginary Real

23



Fquivariance <> G-CNNs

If you want equivariance G-CNNs are the way to go




Classical artificial neural networks TU/e

Class probability \

2D function/image |

X =Ly(R?) | l
2D array \\\_\__ I 1 !
X — R28x28 1Dv;;‘or EO £1 — (I)wl (20) £2 — ‘I)wz (gl) Y = éwi‘ (EL_I)
Y — R784
l—1

=t e RN The input vector

xl e RN The output vector

Ky RNZ XN A linear mapping parameterized by weights w
be RN A bias term

0:R—R An activation function (applied element wise)

w = (W, b) The trainable parameters



Artificial NNs in the continuous world TU/e

Images as functions in LQ (RQ) Linear (and bounded) mappings between  (Dunjford-Pettis)

feature maps are kernel operators
(K () = [x k(y,2) f(z)da

Equivariance constraint on K implies group
convolution!

fme X =La(X)
fort ey =1La(Y)
Ky : X =Y
beR
w:R—=>R

W — (Wab)

The input “vector”: function on space X

The output “vector”: function on space Y

A linear mapping parameterized by weights W
A bias term

An activation function (applied element wise)

The trainable parameters e



Artificial NNs in the continuous world TU/e

Bekkers 2019, Thm 1*

*Work with Remco Duits at TU/e. See also: Duits 2005 — Thm 25, Cohen, Geiger, Weiler 2018 - Thm 6.1, Kondor, Trivedi 2018 - Thm 1

Theorem 1. Ler operator K : Lao( X ) — Lao(Y') be linear and bounded, let X, Y be homogeneous
spaces on which Lie group G act transitively, and djx a Radon measure on X, then

1. K is a kernel operator, i.e., Eﬁ"éel.l(YxX) (Kf)(y) fX (y,z) f(x)dux,

2. with equivariance constraint Vg € G : Ko EG_}LQ(X) = Egﬁ"h Y) o K the map is defined
by a one-argument kernel
k(y,z) = k(yo. g7t © ) = (gt @ ) (3)
for any g, € G such that y = g,, © yo for some fixed origin yo € Y,

3. ifY = G/ H is the quotient of G with H = Stabg(yo) then the kernel is constrained via

Vher, Voex k(x) = k(h=' o), (4)




Our options for SE(2) equivariance TU/e

2D cross-correlations KC : Lo (R?) — Lo (RR?) With
W Y =SE(2)/50(2)
T?%ﬁ Equivariance requires
e .9 KDY= 0k P k(Rgx) = k(x)
SE(2) lifting correlations K : Lo (R?) — Lo (SE(2))
q = (K)(g) = Ugk, L, m2)
.

SE(2) G-correlations K : Lo(SE(2)) — Lo(SE(2))

1o e (KF)(9) = (LyK, F)L,sE
& & g (SE(2))




B-Splines on Lie groups



B-Splines on R 1

1D basis function )

TU/e

Piecewise polynomial!

Finite support!

n n 2 3
B@)i= (1o 4= oy ) @) I

Basis function on R¢ D R D R IR
B¥"(x) = (B" @+ ® B")(x) = B"(x0) B"(21) ... B"(z)

Uniform B-Spline on R¢

N
o ‘ Rd,n X — X
f(x):= ZCZB ( o >

1=1




How to define B-Splines on manifolds? TU/e

What is the meaning of “uniform” on a manifold?

What parameterization to use?

31



The exponential and logarithmic map

Link: SO(3)/S0O(2)

Exp

_ Log

Te(M)

- /\C2

Y

The distance from a point g to the
origin € is given by the length of its
“initial velocity vector”

ILog g

TU/e

32



A grid on the Lie algebra mapstoagridon G TU/e

Now we can define B-splines on the
vector space of the Lie algebra.

This then defines a function on the
group.

Equidistant w.r.t. the default distance
onthe group ||Log(h; ' - hy)|

33



B-Splines on Lie groups G = R% x H TU/e
Via the Logarithmic map

k(g) = sz (9‘3 xz)B(LOg(};;l.hi))

:13

Examples of B-Splines on H
Partition of unity B-Spline

iy

R Rotmtimmsifggotient) 5’2 , N=50

(3)/50(2
Approximately uniform . o e g

N=5000

e
A 5 W
e i
= 3
- o ow - B T
- T
' i

34



Unique properties of B-spline kernels

Localized Scaled Atrous/Dilated

Deformable

TU/e

35



Properties of B-splines on Lie groups TU/e

* Enables to construction a basis on any Lie group

* To build full G-CNNs for groups of type G = R¢ x H we only need:

. N
* The group product and inverse of I1 Modular code (released soon...)
e Its action on R? > << import gsplinets
L L . << 1 - gsplinets.1 \SE2
* The logarithmic map (which is analytic) | ayers = gsplinets.layersi )

* Enables heuristics from conventional CNN architectures:
* Dense/”fully connecting” convolution kernels on H
Localized convolutions on H
Atrous convolutions on H
Deformable kernels (also optimize over the centers of the splines)

36



Results



Case 1 (Scaling invariance): Facial landmark TU/e
detection | CelebA database | 6 G-CNN layers

Principle behind scale-translation G-CNNSs

Scaling a 2D kernel Scaling a G-kernel Translating and scaling a G-kernel
RT =Ly (R? RT =Ly (RZXRT RZxR™ 2xRT

cF —Lo(R?) rF — Lo (R*xR™) LF XRT =Ly (R*XR™)
<]

Y 'I;:Odo\ll

II\"\._Q_../;; S S
P
X x

38




Case 1 (Scaling invariance): Facial landmark

TU/e

detection | CelebA database | 6 G-CNN layers

Accuracy

0.99

0.98

o
(0
~

0.96

0.95

mE ?D-conv (fixed Scale)
A
A ° . G-conv (dense)
g i..* = o~ ¢
Y/ AR A G-conv (local, N;=3)
(‘I
. (1) 1.41 (2) 2. (3) 2.83 (4) 4. (9)

Scale range (nr of scales sampled) 39



Case 2 (Rotation invariance): Cancer detection |

PCAM database | 4 G-CNN layers

0.880
o
ﬁ normal o ®
®
d
: 0.875
| normal )
. >
] )
(O
T &)
% mitotic <
. B
0.865
{ J
//v
2D CNN
0.860
1 3 4 5 8 12 16

Number of basis functions N,

TU/e

- Nh=4
- Nh=8
-\, =12
=\, =16

@ Dense
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Conclusion



Conclusion TU/e

G-CNNs “naturally” arise from NNs under equivariance constraints

G-CNNs improve upon classic CNNs by
* Making data augmentation w.r.t. the group obsolete
* No trainable weights need to be spend on learning geometry behavior
e Additional geometry structure allows to deal with context (recognition by components, relative poses)

B-Splines can be used to build G-CNNs for a large class of transf. groups

They enable unique properties
* Localized G-convs
* Atrous G-convs
* Deformable G-convs
* Flexibility in kernel resolution (# basis functions) vs sampling resolution (# grid points)

Experimental results
* G-CNNs outperform 2D CNNs
* Localized G-CNNs generally outperform full/dense G-CNNs
* Atrous G-CNNs generally outperform full/dense G-CNNs

42



TU/e

Thank you for your attention!

Ph.D. position on this topic coming up at AMLab, University of Amsterdam

X Amsterdam Machine Learning Lab

7PN
BI AN LA B Informatics Institute

x " Amsterdam . .
Machine Learning Lab University ofAmsterdam
UvA




Backup slides

On SE(2) and SO(3) and Exp/Log map



Left-invariant vector fields (push forward of left mult.) TU/e

Projection on the spatial plane

y 97(t)

“ A
Y ) Aglg Allg
Azleu ')"(t) 4&1‘151&1011 via

/’ left-multiplication with g
/E Al |e £

W L)

Left-invariant vector field

A tangent space at the origin defines a left-invariant tangent bundle on the group
45



The 3D Rotation group and the sphere as a quotient TU/e

The 3D rotation group The 2-sphere as a quotient group
N N
a N7 I
Representation in parameter ~ Rotation by R € SO(3) S? = 50(3)/S0(2)

space (XYZ-Euler angles) R = Re, v Re, gRRe, o

46



Some animations on vector fields TU/e

The group structure can be used This generates a frame of In a quotient group this frame is
to “transport” vectors. reference attachedtoeach g € G not unique...

A vector at the origin defines a

whole vector field!
47



The exponential map: integrating along a vector field  TU/e

— go-expct

=log g, ' - g1

Link: B-Splines on S2




B-splines on quotient groups require symmetry
constraints

TU/e
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Backup slides

Equivariance diagram with actual results



Real example (rotation invariant features) TU/e

Lifting layer (1 channel example) Group conv layers Projection layer

)
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() mOOOEEOOEEEDEEEDE
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