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Presentation outline

• Motivation

• Group theory (preliminaries)

• G-CNNs
• Construction and intuition
• Theorem: NN-layers with equivariance constraints => G-CNNs

• B-Spline based G-CNNs: G-CNNs on arbitrary Lie groups

• Conclusion
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Motivation



Recognition by components
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Such reasoning motivates
related work on capsule nets

Hinton, Krizhevsky & Wang, 2011
Lenssen, Fey & Libuschewski, 2018

Biederman, 1987

Group theory: Symmetries and relative information processing
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Aim: Build AI systems that are equipped with geometric understanding
• Do not have to learn geometric structure and relations (equivariance)
• Are data-efficient by exploiting symmetries (no need for geometric data augmentation)
• High representation power by recognition by components (capsule net view point)
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Group theory (preliminaries)



(Symmetry) Groups
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The translation group
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The roto-translation group
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Special Euclidean Motion group



Representations transfer group structure to images
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Set of points Convolution kernel

A linear operator                          that transforms functions on some space     
and parameterized by group elements                  is called a representation of 
the group if it caries the group structure in the following way



Representations transfer group structure to images
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Example:

2D image
the group SE(2)
roto-translation

A linear operator                          that transforms functions on some space     
and parameterized by group elements                  is called a representation of 
the group if it caries the group structure in the following way



Transforming SE(2) descriptors
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Pattern of local 
orientations:

Density on position 
orientation space:
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CNNs and G-CNNs 
via group representations



Cross-correlations
Representation of the translation group!Cross-correlation:

2D kernel 2D feature map 2D feature map (after ReLU)



Group equivariance
Example: Convolutions are equivariant w.r.t. the translation group

Representation of the 
translation group



Group equivariance
Example: Convolutions are generally not equivariant w.r.t. roto-translations.

Representation of the 
roto-translation group

Representation of the 
translation group



Roto-translation equivariant cross-correlations
Representation of the roto-translation group!Lifting correlations:

rotationtranslation

Rotated kernel 2D feature map SE(2) feature map



Roto-translation equivariant cross-correlations

Representations of SE(2)

Lifting layer

?

?



Roto-translation equivariant cross-correlations
Group correlations:

rotationtranslation

Rotated kernel SE(2) feature map SE(2) feature map

planar rotation

periodic shift



Class probability

Architecture for rotation invariant patch classification

Input image

“normal” (0) vs “mitotic” (1)

Rotation equivariant

Max-pooling over rotations 
guarantees rotation invariance

Bekkers, Lafarge et al. 2018



Results
Bekkers, Lafarge et al. 2018

G-CNNs outperform CNNs (matched in network complexity):

• Even when training the classical CNNs with and G-CNNs without data-augmentation

• G-CNNs do not have to spend valuable network capacity on learning geometric 
structure -> focus entirely on learning effective representations



Related work on group equivariant networks

Group convolution networks
(domain extension)

Steerable filter networks
(co-domain extension)

LeCun et al 1990 ℤ2 translation networks

Mallat et al. 2013, 2015 SE(2)             Scattering transform & SVM
Bekkers et al. 2014-2018 SE(2) via B-splines, 2 layer G-CNN

Cohen-Welling 2016 p4m via 90o rotations + flips + theory!
Dieleman et al. 2016           p4m via 90o rotations + flips

Weiler et al. 2017 SE(2) via circular harmonics
Zhou et al. 2017                   SE(2) via bilinear interpolation
Bekkers et al. 2018 SE(2) via bilinear interpolation
Hoogeboom et al. 2018      S(2,6) hexagonal grids

Winkels-Cohen 2018           SE(3,N) + m 90o rotations + flips
Worrall-Brostow 2018         SE(3,N) 90o rotations

Cohen et al. 2018 SO(3) via spherical harmonics

Worrall et al. 2017 SE(2) irrep
Marcos et al. 2017 SE(2) vector field networks

Kondor 2018 SE(3) irrep, N-body nets
Thomas et al. 2018 SE(3) irrep, point clouds
Weiler et al. 2018    SE(3)        irrep

Esteves SO(3)/SO(2) irrep
Kondor-Trivedi 2018    SO(d) irrep (on compact 

quotient sp.)

Continuous 
Discrete
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Based on the overview given in Cohen-Geiger-Weiler 2018



Can we use the theory in practice for other groups?
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G-CNNs are currently limited to compact groups:

Discrete        <>        no interpolation

Continuous   <>        Fourier theory on groups

HexaConv
Hoogeboom, Peters, Cohen, Welling – ICLR 2018

Circular/Spherical harmonics
Worall, Garbin, Turmukhambetov, Brostow – CVPR 2017

Why this limitation? Available tools. We need to 
implement transformations (and sampling) of the 
convolution kernels.

Solution? A new flexible class of basis functions that 
enables to implement G-convs for arbitrary Lie groups.

B-Splines on Lie groups
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Equivariance G-CNNs
If you want equivariance G-CNNs are the way to go



The input vector

The output vector

A linear mapping parameterized by weights

A bias term

An activation function (applied element wise)

The trainable parameters

Classical artificial neural networks



Artificial NNs in the continuous world
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The input “vector”: function on space X

The output “vector”: function on space Y

A linear mapping parameterized by weights

A bias term

An activation function (applied element wise)

The trainable parameters

Images as functions in Linear (and bounded) mappings between 
feature maps are kernel operators

(Dunford-Pettis)

Equivariance constraint on K implies group 
convolution!



Artificial NNs in the continuous world
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The input “vector”: function on space X

The output “vector”: function on space Y

A linear mapping parameterized by weights

A bias term

An activation function (applied element wise)

The trainable parameters

Images as functions in Linear (and bounded) mappings between 
feature maps are kernel operators

(Dunford-Pettis)

Equivariance constraint on K implies group 
convolution!

Bekkers 2019, Thm 1*
*Work with Remco Duits at TU/e.                      See also: Duits 2005 – Thm 25, Cohen, Geiger, Weiler 2018 - Thm 6.1, Kondor, Trivedi 2018 - Thm 1



Our options for SE(2) equivariance
2D cross-correlations

SE(2) lifting correlations

SE(2) G-correlations

Equivariance requires

With
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B-Splines on Lie groups



B-Splines on ℝ𝑑𝑑

30

1D basis function

Basis function on 

Uniform B-Spline on 

Piecewise polynomial!
Finite support!



How to define B-Splines on manifolds?
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What is the meaning of “uniform” on a manifold?

What parameterization to use?



The exponential and logarithmic map
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The distance from a point        to the
origin      is given by the length of its
“initial velocity vector”

Link: SO(3)/SO(2)



A grid on the Lie algebra maps to a grid on G

33

Now we can define B-splines on the 
vector space of the Lie algebra. 

This then defines a function on the 
group.

Equidistant w.r.t. the default distance 
on the group



B-Splines on Lie groups 
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Via the Logarithmic map

Examples of B-Splines on H

2D RotationsIsotropic scaling3D rotations (quotient)

Approximately uniform



Unique properties of B-spline kernels
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Localized Scaled Atrous/Dilated Deformable



Properties of B-splines on Lie groups

• Enables to construction a basis on any Lie group

• To build full G-CNNs for groups of type                          we only need:
• The group product and inverse of
• Its action on      
• The logarithmic map (which is analytic)

• Enables heuristics from conventional CNN architectures:
• Dense/”fully connecting” convolution kernels on H
• Localized convolutions on H
• Atrous convolutions on H
• Deformable kernels (also optimize over the centers of the splines)
• …

36

Modular code (released soon…)
<< import gsplinets
<< layers = gsplinets.layers(‘SE2')
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Results



Case 1 (Scaling invariance): Facial landmark 
detection | CelebA database | 6 G-CNN layers
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Scaling a 2D kernel Scaling a G-kernel Translating and scaling a G-kernel

Principle behind scale-translation G-CNNs



Case 1 (Scaling invariance): Facial landmark 
detection | CelebA database | 6 G-CNN layers
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Case 2 (Rotation invariance): Cancer detection | 
PCAM database | 4 G-CNN layers
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normal

normal

mitotic

…

2D CNN
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Conclusion



Conclusion
• G-CNNs “naturally” arise from NNs under equivariance constraints

• G-CNNs improve upon classic CNNs by
• Making data augmentation w.r.t. the group obsolete
• No trainable weights need to be spend on learning geometry behavior
• Additional geometry structure allows to deal with context (recognition by components, relative poses)

• B-Splines can be used to build G-CNNs for a large class of transf. groups

• They enable unique properties
• Localized G-convs
• Atrous G-convs
• Deformable G-convs
• Flexibility in kernel resolution (# basis functions) vs sampling resolution (# grid points)

• Experimental results
• G-CNNs outperform 2D CNNs
• Localized G-CNNs generally outperform full/dense G-CNNs
• Atrous G-CNNs generally outperform full/dense G-CNNs
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Thank you for your attention!

Ph.D. position on this topic coming up at AMLab, University of Amsterdam

Amsterdam Machine Learning Lab

Informatics Institute

University of Amsterdam
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Backup slides
On SE(2) and SO(3) and Exp/Log map



Left-invariant vector fields (push forward of left mult.)
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Left-invariant vector field

A tangent space at the origin defines a left-invariant tangent bundle on the group



The 3D Rotation group and the sphere as a quotient
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The 3D rotation group The 2-sphere as a quotient group



Some animations on vector fields
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The group structure can be used
to “transport” vectors.

A vector at the origin defines a
whole vector field!

This generates a frame of
reference attached to each 𝑔𝑔 ∈ 𝐺𝐺

In a quotient group this frame is
not unique…



The exponential map: integrating along a vector field

Link: B-Splines on S2



B-splines on quotient groups require symmetry 
constraints
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Backup slides
Equivariance diagram with actual results



Real example (rotation invariant features)
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