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Uncertainty Quantification 
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UQ 
 Uncertainty Quantification (UQ) is a relatively new area of 

study in applied mathematics and engineering 
 Becoming a major focus of research (and funding) 
 Applications wherever complex simulation models are used 

 It is concerned with uncertainties in the predictions of models 
 Mechanistic, science-based models (simulators) 

 Unlike empirical, statistical models, these do not intrinsically account 
for any of the uncertainties in their predictions 

 Often based on differential equations 
 The idea of quantifying (some of) the uncertainties is quite a 

new concept in these fields 
 But uncertainty quantification is what statisticians have always 

done! 
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The simulator as a function 
 Using computer language, a simulator takes a number of inputs 

and produces a number of outputs 
 

 We can represent any output y as a function 
  y = η(x) 
 of a vector x of inputs 
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Where is the uncertainty? 
 How might the simulator output y = η(x) differ from the true 

real-world value z that the simulator is supposed to predict? 
 Error in inputs x 

 Initial values 
 Forcing inputs 
 Model parameters 

 Error in model structure or solution 
 Wrong, inaccurate or incomplete science 
 Bugs, solution errors 

 The problem is made particularly challenging by the fact that 
simulators are often computationally expensive 
 From minutes to months for a single evaluation of η(.) 
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Quantifying uncertainty 
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 The ideal is to provide a probability distribution p(z) for the 
true real-world value 
 The centre of the distribution is a best estimate 
 Its spread shows how  

much uncertainty about z  
is induced by uncertainties  
on the previous slide 
 

 How do we get this? 
 Input uncertainty: characterise p(x), propagate through to p(y) 
 Structural uncertainty: characterise p(z - y) 



Managing uncertainty 
 To understand the implications of different uncertainty sources 
 Probabilistic, variance-based sensitivity analysis 
 Helps with targeting and prioritising research 

 To reduce uncertainty, get more information! 
 Informal – more/better science 
 Tighten p(x) through improved understanding 
 Tighten p(z - y) through improved modelling or programming 

 Formal – using real-world data 
 Calibration – learn about model parameters 
 Data assimilation – learn about the state variables 
 Learn about structural error z - y 
 Validation 
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Applied maths versus Statistics UQ 
 Applied Maths 
 Tools for propagating input uncertainty 

 Polynomial chaos expansions,  stochastic collocation etc. 
 No study of how to quantify input uncertainty 
 No accounting for structural uncertainty (model inadequacy) 
 No accounting for uncertainty due to approximation of the 

simulator 
 E.g.  through truncating expansions 

 Statistics 
 Total UQ 

 All sources of uncertainty are studied and can be addressed 
 And we have our own smart tools (emulators) for propagation  

 MUCM project (http://mucm.ac.uk) 
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The Objectives of Inversion 
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Inversion as nonlinear regression 

8/4/2016 UQ + inverting imperfect models, Delft, 11 

 We have a simulator η(x,θ) and observations 
 zi = η(xi,θ) + εi  

 In statistical language this is a nonlinear regression model 
 The inversion problem is one of inference about θ 

 I’ll be assuming the Bayesian paradigm 
 Requires a prior distribution for θ 

 Often assumed to be non-informative 

 Produces a posterior distribution 

 Very common approach, but has a major flaw 
 The observations are of the real physical system ζ(.) 
 And the simulator is invariably imperfect:  η(.,θ) ≠ ζ(.) ∀θ 



Model discrepancy 
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 We should write 
 zi = ζ(xi) + εi  = η(xi,θ) + δ(xi) + εi  
 where δ(.) is model discrepancy 
 and is an unknown function 

 Inference about θ is now clearly more complex 
 No longer just a nonlinear regression problem 
 Some literature on correlated errors 

 How important is it? 
 That depends on the objectives of the inversion 
 And in particular on the nature of θ 

 



Inversion and the nature of parameters 
 Parameters may be physical or just for tuning 
 We adjust tuning parameters so the model fits reality better 

 We are not really interested in their ‘true’ values 

 Physical parameters are different 
 We are often really interested in true physical values 

 What are we inverting for? 
 To learn about physical parameter values 

 Model discrepancy is hugely important and needs care and thought 

 To predict reality – within context and range of observations 
 Interpolation:  model discrepancy is important but easily addressed 

 To predict reality – outside context/range of observations 
 Extrapolation:  discrepancy hugely important, needs care and thought 

 
 8/4/2016 UQ + inverting imperfect models, Delft, 13 



Example 1:  A simple machine (SM) 
 A machine produces an amount of work y which depends 

on the amount of effort x put into it 
 Ideally,   y = βx 

 Parameter β is the rate at which effort can be converted to work 
 It’s a physical parameter 

 True value of β is β* = 0.65 

 Graph shows observed data 
 Points lie below y = 0.65x 

 For large enough x 

 Because of losses due to  
friction etc. 

  ζ(x) = 0.65 x (1 + 0.05x)–1 
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Example 2: Hot and cold (HC) 
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 An object is placed in a hot medium 
 Initially it heats up but then cools as the medium cools 

 Simulator  
  η(t,θ) = θ1t exp(– θ2t) 

 Reality 
 ζ(t) = 10 t (1 + t2 /10)–1.5 

 Parameters are physical 
 θ1 is initial heating rate, a property of the object 
 θ2 controls the cooling, a property of the medium and setup 

 Interested in parameters but also in 
 Maximum temperature ζmax and time tmax when max is reached 
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Meaning of parameters 
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 What is the relationship between parameters and reality? 
 They don’t appear in ζ(.)  
 In the SM example, β is the gradient at the origin 

 Theoretical efficiency only achievable at low inputs 
 This is well defined for reality,  β = 0.65 

 In the HC example, θ1 is the gradient at the origin 
 Again well defined,  θ1 = 10 

 θ2 is more difficult because in reality cooling is not exponential 
 We define θ2 = 0.413 from log gradient at point of inflection 

 ζmax and tmax are not really physical 
 From the simulator,  ζmax = θ1θ2

–1e–1,  tmax= θ2
–1  

 In reality,  ζmax = 12.172 and tmax = 2.236 depend on θ and the setup 
 



Ignoring model discrepancy 
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SM assuming no discrepancy 
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 Following the usual approach, inversion is a simple matter 
of linear regression through the origin 
  zi = βxi + εi  

 Here are some results from various sample sizes spread 
uniformly over 3 ranges of x values 

Range [0.1,2] [0.1,4] [2,6] 

 n=11 0.549 (0.063) 0.562 (0.029) 0.533 (0.023) 

 n=31 0.656 (0.038) 0.570 (0.017) 0.529 (0.011) 

 n=91 0.611 (0.021) 0.571 (0.012) 0.528 (0.007) 

 n infinite 0.605 (0) 0.565 (0) 0.529 (0) 
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HC assuming no discrepancy 
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 These results are from samples of 91 observations over 
three different ranges 
 Almost every single posterior distribution is concentrated far 

from the true value 

Range [0.1,1] [0.2,2] [0.4,4] TRUE 

 θ₁ 10.57 (0.11) 11.11 (0.13) 12.77 (0.19) 10 

 θ₂ 0.159 (0.049) 0.237 (0.023) 0.401 (0.033) 0.413 

 tmax 5.00 (0.47) 3.61 (0.13) 2.52 (0.04) 2.24 

 ζmax  19.42 (1.55) 14.75 (0.38) 11.85 (0.08) 12.17 

 



The problem is completely general 
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 Inverting (calibrating, tuning, matching) a wrong model 
gives parameter estimates that are wrong 
 Not equal to their true physical values – biased  
 With more data we become more sure of these wrong values 

 The SM and HC are trivial models, but the same 
conclusions apply to all models 
 All models are wrong 
 In more complex models it is just harder to see what is going 

wrong 
 Even with the SM, it takes a lot of data to see any curvature in 

reality 

 What can we do about this? 



 

The Simple Machine and Model 
Discrepancy 
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SM revisited 
 Kennedy and O’Hagan (2001) introduced discrepancy δ(.) 
 Modelled it as a zero-mean Gaussian process 
 They claimed it acknowledges additional uncertainty 
 And mitigates against over-fitting of θ 

 So add this model discrepancy term to the linear model of the 
simple machine 

   zi = βxi + δ(xi) + εi  

 With δ(.) modelled as a zero-mean GP 
 Posterior distribution of β now behaves quite differently 
 Results here from extensive study of SM in 
 Brynjarsdóttir, J. and O'Hagan, A. (2014). Learning about physical 

parameters: The importance of model discrepancy. Inverse Problems, 
30, 114007 (24pp), November 2014. 
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SM – inversion, with discrepancy 
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 Posterior distribution much broader and doesn’t get 
worse with more data 
 But still misses the true value 



Interpolation  
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 Main benefit of simple GP model discrepancy is prediction 
 E.g. at x = 1.5 

 
 
 
 
 
 
 
 

 Prediction within the range of the data is possible 
 And gets better with more data 



But when it comes to extrapolation … 
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 … at x = 6 
 
 
 

 
 

 
 

 
 More data doesn’t help because it’s all in the range [0, 4] 
 Prediction OK here but gets worse for larger x  



Extrapolation  
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 One reason for wish to learn about physical parameters 
 Should be better for extrapolation than just tuning 

 Without model discrepancy  
 The parameter estimates will be biased 
 Extrapolation will also be biased 

 Because best fitting parameter values are different in different parts of 
the control variable space 

 With more data we become more sure of these wrong values 

 With GP model discrepancy 
 Extrapolating far from the data does not work 

 No information about model discrepancy 
 Prediction just uses the (calibrated) simulator 

 



We haven’t solved the problem 
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 With simple GP model discrepancy the posterior 
distribution for θ is typically much wider 
 Increases the chance that we cover the true value 
 But is not very helpful 
 And increasing data does not improve the precision 

 Similarly, extrapolation with model discrepancy gives wide 
prediction intervals 
 And may still not be wide enough 

 What’s going wrong here? 



Nonidentifiability 
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 Formulation with model discrepancy is not identifiable 
 For any θ, there is a δ(x) to match reality perfectly 
 Reality is ζ(x) = η(x, θ) + δ(x) 
 Given θ and ζ(x), model discrepancy is δ(x) = ζ(x) – η(x, θ) 

 Suppose we had an unlimited number of observations 
 We would learn reality’s true function (x) exactly 

 Within the range of the data 
 Interpolation works 

 But we would still not learn θ 
 It could in principle be anything 

 And we would still not be able to extrapolate reliably 
 
 
 



The joint posterior 
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 Inversion leads to a joint posterior distribution for θ and 
δ(x)  

 But nonidentifiability means there are many equally good 
fits (θ, δ(x)) to the data 
 Induces strong correlation between θ and δ(x) 
 This may be compounded by the fact that simulators often 

have large numbers of parameters 
 (Near-)redundancy means that different θ values produce (almost) 

identical predictions 
 Sometimes called equifinality 

 Within this set, the prior distributions for θ and δ(x) count 

 



The importance of prior information 
 The nonparametric GP term allows the model to fit and 

predict reality accurately given enough data 
 Within the range of the data 

 But it doesn’t mean physical parameters are correctly 
estimated 
 The separation between original model and discrepancy is 

unidentified 
 Estimates depend on prior information 
 Unless the real model discrepancy is just the kind expected a 

priori the physical parameter estimates will still be biased 
 To learn about θ in the presence of model discrepancy 

we need better prior information 
 And this is also crucial for extrapolation 
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Better prior information 
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 For calibration 
 Prior information about θ and/or δ(x) 

 We wish to calibrate because prior information about θ is not 
strong enough 

 So prior knowledge of model discrepancy is crucial 
 In the range of the data 

 For extrapolation 
 All this plus good prior knowledge of δ(x) outside the range of 

the calibration data 
 That’s seriously challenging! 

 In the SM, a model for δ(x) that says it is zero at x = 0, then 
increasingly negative, should do better 



Inference about the physical parameter 
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 We conditioned  
the GP 
 δ(0) = 0 
 δ′(0) = 0 
 δ′(0.5) < 0 
 δ′(1.5) < 0 

 
 



Prediction      
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Conclusions 
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Summary 
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 Without model discrepancy 
 Inference about physical parameters will be wrong 

 And will get worse with more data 
 The same is true of prediction  

 Both interpolation and extrapolation 

 With crude GP model discrepancy 
 Interpolation inference is OK 

 And gets better with more data 
 But we still get physical parameters and extrapolation wrong 

 The better our prior knowledge about model discrepancy  
 The more chance we have of getting physical parameters right 
 Also extrapolation  

 But then we need even better prior knowledge 
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