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Uncertainty Quantification 
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UQ 
 Uncertainty Quantification (UQ) is a relatively new area of 

study in applied mathematics and engineering 
 Becoming a major focus of research (and funding) 
 Applications wherever complex simulation models are used 

 It is concerned with uncertainties in the predictions of models 
 Mechanistic, science-based models (simulators) 

 Unlike empirical, statistical models, these do not intrinsically account 
for any of the uncertainties in their predictions 

 Often based on differential equations 
 The idea of quantifying (some of) the uncertainties is quite a 

new concept in these fields 
 But uncertainty quantification is what statisticians have always 

done! 
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The simulator as a function 
 Using computer language, a simulator takes a number of inputs 

and produces a number of outputs 
 

 We can represent any output y as a function 
  y = η(x) 
 of a vector x of inputs 
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Where is the uncertainty? 
 How might the simulator output y = η(x) differ from the true 

real-world value z that the simulator is supposed to predict? 
 Error in inputs x 

 Initial values 
 Forcing inputs 
 Model parameters 

 Error in model structure or solution 
 Wrong, inaccurate or incomplete science 
 Bugs, solution errors 

 The problem is made particularly challenging by the fact that 
simulators are often computationally expensive 
 From minutes to months for a single evaluation of η(.) 
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Quantifying uncertainty 
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 The ideal is to provide a probability distribution p(z) for the 
true real-world value 
 The centre of the distribution is a best estimate 
 Its spread shows how  

much uncertainty about z  
is induced by uncertainties  
on the previous slide 
 

 How do we get this? 
 Input uncertainty: characterise p(x), propagate through to p(y) 
 Structural uncertainty: characterise p(z - y) 



Managing uncertainty 
 To understand the implications of different uncertainty sources 
 Probabilistic, variance-based sensitivity analysis 
 Helps with targeting and prioritising research 

 To reduce uncertainty, get more information! 
 Informal – more/better science 
 Tighten p(x) through improved understanding 
 Tighten p(z - y) through improved modelling or programming 

 Formal – using real-world data 
 Calibration – learn about model parameters 
 Data assimilation – learn about the state variables 
 Learn about structural error z - y 
 Validation 

Maxent - July 2012 8 



Applied maths versus Statistics UQ 
 Applied Maths 
 Tools for propagating input uncertainty 

 Polynomial chaos expansions,  stochastic collocation etc. 
 No study of how to quantify input uncertainty 
 No accounting for structural uncertainty (model inadequacy) 
 No accounting for uncertainty due to approximation of the 

simulator 
 E.g.  through truncating expansions 

 Statistics 
 Total UQ 

 All sources of uncertainty are studied and can be addressed 
 And we have our own smart tools (emulators) for propagation  

 MUCM project (http://mucm.ac.uk) 
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The Objectives of Inversion 
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Inversion as nonlinear regression 
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 We have a simulator η(x,θ) and observations 
 zi = η(xi,θ) + εi  

 In statistical language this is a nonlinear regression model 
 The inversion problem is one of inference about θ 

 I’ll be assuming the Bayesian paradigm 
 Requires a prior distribution for θ 

 Often assumed to be non-informative 

 Produces a posterior distribution 

 Very common approach, but has a major flaw 
 The observations are of the real physical system ζ(.) 
 And the simulator is invariably imperfect:  η(.,θ) ≠ ζ(.) ∀θ 



Model discrepancy 
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 We should write 
 zi = ζ(xi) + εi  = η(xi,θ) + δ(xi) + εi  
 where δ(.) is model discrepancy 
 and is an unknown function 

 Inference about θ is now clearly more complex 
 No longer just a nonlinear regression problem 
 Some literature on correlated errors 

 How important is it? 
 That depends on the objectives of the inversion 
 And in particular on the nature of θ 

 



Inversion and the nature of parameters 
 Parameters may be physical or just for tuning 
 We adjust tuning parameters so the model fits reality better 

 We are not really interested in their ‘true’ values 

 Physical parameters are different 
 We are often really interested in true physical values 

 What are we inverting for? 
 To learn about physical parameter values 

 Model discrepancy is hugely important and needs care and thought 

 To predict reality – within context and range of observations 
 Interpolation:  model discrepancy is important but easily addressed 

 To predict reality – outside context/range of observations 
 Extrapolation:  discrepancy hugely important, needs care and thought 

 
 8/4/2016 UQ + inverting imperfect models, Delft, 13 



Example 1:  A simple machine (SM) 
 A machine produces an amount of work y which depends 

on the amount of effort x put into it 
 Ideally,   y = βx 

 Parameter β is the rate at which effort can be converted to work 
 It’s a physical parameter 

 True value of β is β* = 0.65 

 Graph shows observed data 
 Points lie below y = 0.65x 

 For large enough x 

 Because of losses due to  
friction etc. 

  ζ(x) = 0.65 x (1 + 0.05x)–1 
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Example 2: Hot and cold (HC) 
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 An object is placed in a hot medium 
 Initially it heats up but then cools as the medium cools 

 Simulator  
  η(t,θ) = θ1t exp(– θ2t) 

 Reality 
 ζ(t) = 10 t (1 + t2 /10)–1.5 

 Parameters are physical 
 θ1 is initial heating rate, a property of the object 
 θ2 controls the cooling, a property of the medium and setup 

 Interested in parameters but also in 
 Maximum temperature ζmax and time tmax when max is reached 
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Meaning of parameters 
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 What is the relationship between parameters and reality? 
 They don’t appear in ζ(.)  
 In the SM example, β is the gradient at the origin 

 Theoretical efficiency only achievable at low inputs 
 This is well defined for reality,  β = 0.65 

 In the HC example, θ1 is the gradient at the origin 
 Again well defined,  θ1 = 10 

 θ2 is more difficult because in reality cooling is not exponential 
 We define θ2 = 0.413 from log gradient at point of inflection 

 ζmax and tmax are not really physical 
 From the simulator,  ζmax = θ1θ2

–1e–1,  tmax= θ2
–1  

 In reality,  ζmax = 12.172 and tmax = 2.236 depend on θ and the setup 
 



Ignoring model discrepancy 
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SM assuming no discrepancy 
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 Following the usual approach, inversion is a simple matter 
of linear regression through the origin 
  zi = βxi + εi  

 Here are some results from various sample sizes spread 
uniformly over 3 ranges of x values 

Range [0.1,2] [0.1,4] [2,6] 

 n=11 0.549 (0.063) 0.562 (0.029) 0.533 (0.023) 

 n=31 0.656 (0.038) 0.570 (0.017) 0.529 (0.011) 

 n=91 0.611 (0.021) 0.571 (0.012) 0.528 (0.007) 

 n infinite 0.605 (0) 0.565 (0) 0.529 (0) 
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HC assuming no discrepancy 
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 These results are from samples of 91 observations over 
three different ranges 
 Almost every single posterior distribution is concentrated far 

from the true value 

Range [0.1,1] [0.2,2] [0.4,4] TRUE 

 θ₁ 10.57 (0.11) 11.11 (0.13) 12.77 (0.19) 10 

 θ₂ 0.159 (0.049) 0.237 (0.023) 0.401 (0.033) 0.413 

 tmax 5.00 (0.47) 3.61 (0.13) 2.52 (0.04) 2.24 

 ζmax  19.42 (1.55) 14.75 (0.38) 11.85 (0.08) 12.17 

 



The problem is completely general 
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 Inverting (calibrating, tuning, matching) a wrong model 
gives parameter estimates that are wrong 
 Not equal to their true physical values – biased  
 With more data we become more sure of these wrong values 

 The SM and HC are trivial models, but the same 
conclusions apply to all models 
 All models are wrong 
 In more complex models it is just harder to see what is going 

wrong 
 Even with the SM, it takes a lot of data to see any curvature in 

reality 

 What can we do about this? 



 

The Simple Machine and Model 
Discrepancy 
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SM revisited 
 Kennedy and O’Hagan (2001) introduced discrepancy δ(.) 
 Modelled it as a zero-mean Gaussian process 
 They claimed it acknowledges additional uncertainty 
 And mitigates against over-fitting of θ 

 So add this model discrepancy term to the linear model of the 
simple machine 

   zi = βxi + δ(xi) + εi  

 With δ(.) modelled as a zero-mean GP 
 Posterior distribution of β now behaves quite differently 
 Results here from extensive study of SM in 
 Brynjarsdóttir, J. and O'Hagan, A. (2014). Learning about physical 

parameters: The importance of model discrepancy. Inverse Problems, 
30, 114007 (24pp), November 2014. 
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SM – inversion, with discrepancy 
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 Posterior distribution much broader and doesn’t get 
worse with more data 
 But still misses the true value 



Interpolation  
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 Main benefit of simple GP model discrepancy is prediction 
 E.g. at x = 1.5 

 
 
 
 
 
 
 
 

 Prediction within the range of the data is possible 
 And gets better with more data 



But when it comes to extrapolation … 
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 … at x = 6 
 
 
 

 
 

 
 

 
 More data doesn’t help because it’s all in the range [0, 4] 
 Prediction OK here but gets worse for larger x  



Extrapolation  
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 One reason for wish to learn about physical parameters 
 Should be better for extrapolation than just tuning 

 Without model discrepancy  
 The parameter estimates will be biased 
 Extrapolation will also be biased 

 Because best fitting parameter values are different in different parts of 
the control variable space 

 With more data we become more sure of these wrong values 

 With GP model discrepancy 
 Extrapolating far from the data does not work 

 No information about model discrepancy 
 Prediction just uses the (calibrated) simulator 

 



We haven’t solved the problem 

8/4/2016 UQ + inverting imperfect models, Delft, 28 

 With simple GP model discrepancy the posterior 
distribution for θ is typically much wider 
 Increases the chance that we cover the true value 
 But is not very helpful 
 And increasing data does not improve the precision 

 Similarly, extrapolation with model discrepancy gives wide 
prediction intervals 
 And may still not be wide enough 

 What’s going wrong here? 



Nonidentifiability 
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 Formulation with model discrepancy is not identifiable 
 For any θ, there is a δ(x) to match reality perfectly 
 Reality is ζ(x) = η(x, θ) + δ(x) 
 Given θ and ζ(x), model discrepancy is δ(x) = ζ(x) – η(x, θ) 

 Suppose we had an unlimited number of observations 
 We would learn reality’s true function (x) exactly 

 Within the range of the data 
 Interpolation works 

 But we would still not learn θ 
 It could in principle be anything 

 And we would still not be able to extrapolate reliably 
 
 
 



The joint posterior 
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 Inversion leads to a joint posterior distribution for θ and 
δ(x)  

 But nonidentifiability means there are many equally good 
fits (θ, δ(x)) to the data 
 Induces strong correlation between θ and δ(x) 
 This may be compounded by the fact that simulators often 

have large numbers of parameters 
 (Near-)redundancy means that different θ values produce (almost) 

identical predictions 
 Sometimes called equifinality 

 Within this set, the prior distributions for θ and δ(x) count 

 



The importance of prior information 
 The nonparametric GP term allows the model to fit and 

predict reality accurately given enough data 
 Within the range of the data 

 But it doesn’t mean physical parameters are correctly 
estimated 
 The separation between original model and discrepancy is 

unidentified 
 Estimates depend on prior information 
 Unless the real model discrepancy is just the kind expected a 

priori the physical parameter estimates will still be biased 
 To learn about θ in the presence of model discrepancy 

we need better prior information 
 And this is also crucial for extrapolation 
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Better prior information 
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 For calibration 
 Prior information about θ and/or δ(x) 

 We wish to calibrate because prior information about θ is not 
strong enough 

 So prior knowledge of model discrepancy is crucial 
 In the range of the data 

 For extrapolation 
 All this plus good prior knowledge of δ(x) outside the range of 

the calibration data 
 That’s seriously challenging! 

 In the SM, a model for δ(x) that says it is zero at x = 0, then 
increasingly negative, should do better 



Inference about the physical parameter 
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 We conditioned  
the GP 
 δ(0) = 0 
 δ′(0) = 0 
 δ′(0.5) < 0 
 δ′(1.5) < 0 

 
 



Prediction      
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                  x = 1.5                                           x = 6 



Conclusions 
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Summary 
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 Without model discrepancy 
 Inference about physical parameters will be wrong 

 And will get worse with more data 
 The same is true of prediction  

 Both interpolation and extrapolation 

 With crude GP model discrepancy 
 Interpolation inference is OK 

 And gets better with more data 
 But we still get physical parameters and extrapolation wrong 

 The better our prior knowledge about model discrepancy  
 The more chance we have of getting physical parameters right 
 Also extrapolation  

 But then we need even better prior knowledge 
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