UQ and Inverting Imperfect Models

Tony O'Hagan

Outline

- Uncertainty Quantification
 - Applied maths versus statistics UQ
- The objectives of inversion
 - Physical and tuning parameters
 - Imperfect simulators two examples
- Ignoring model discrepancy
 - Results of inverting the examples
 - Implications for learning about physical parameters
- The simple machine and model discrepancy
 - Simple model discrepancy
 - Nonidentifiability

Conclusions

Uncertainty Quantification

UQ

- Uncertainty Quantification (UQ) is a relatively new area of study in applied mathematics and engineering
 - Becoming a major focus of research (and funding)
 - Applications wherever complex simulation models are used
- It is concerned with uncertainties in the predictions of models
 - Mechanistic, science-based models (simulators)
 - Unlike empirical, statistical models, these do not intrinsically account for any of the uncertainties in their predictions
 - Often based on differential equations
- The idea of quantifying (some of) the uncertainties is quite a new concept in these fields
 - But uncertainty quantification is what statisticians have always done!

The simulator as a function

- Using computer language, a simulator takes a number of inputs and produces a number of outputs
- We can represent any output y as a function

 $y = \eta(x)$

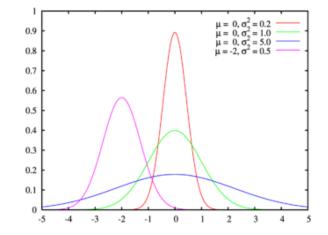
of a vector x of inputs

Where is the uncertainty?

- How might the simulator output $y = \eta(x)$ differ from the true real-world value z that the simulator is supposed to predict?
 - Error in inputs *x*
 - Initial values
 - Forcing inputs
 - Model parameters
 - Error in model structure or solution
 - Wrong, inaccurate or incomplete science
 - Bugs, solution errors
- The problem is made particularly challenging by the fact that simulators are often computationally expensive
 - From minutes to months for a single evaluation of $\eta(.)$

Quantifying uncertainty

- The ideal is to provide a probability distribution p(z) for the true real-world value
 - The centre of the distribution is a best estimate
 - Its spread shows how much uncertainty about z is induced by uncertainties on the previous slide



- How do we get this?
 - Input uncertainty: characterise p(x), propagate through to p(y)
 - Structural uncertainty: characterise p(z y)

Managing uncertainty

- To understand the implications of different uncertainty sources
 - Probabilistic, variance-based sensitivity analysis
 - Helps with targeting and prioritising research
- To reduce uncertainty, get more information!
- Informal more/better science
 - Tighten p(x) through improved understanding
 - Tighten p(z y) through improved modelling or programming
- Formal using real-world data
 - Calibration learn about model parameters
 - Data assimilation learn about the state variables
 - Learn about structural error z y
 - Validation

Applied maths versus Statistics UQ

Applied Maths

- Tools for propagating input uncertainty
 - Polynomial chaos expansions, stochastic collocation etc.
- No study of how to quantify input uncertainty
- No accounting for structural uncertainty (model inadequacy)
- No accounting for uncertainty due to approximation of the simulator
 - E.g. through truncating expansions
- Statistics
 - Total UQ
 - All sources of uncertainty are studied and can be addressed
 - And we have our own smart tools (emulators) for propagation
 - MUCM project (http://mucm.ac.uk)

The Objectives of Inversion

UQ + inverting imperfect models, Delft, 8/4/2016

Inversion as nonlinear regression

• We have a simulator $\eta(x,\theta)$ and observations

 $z_i = \eta(x_i, \theta) + \varepsilon_i$

- In statistical language this is a nonlinear regression model
 - The inversion problem is one of inference about θ
- I'll be assuming the Bayesian paradigm
 - Requires a prior distribution for θ
 - Often assumed to be non-informative
 - Produces a posterior distribution
- Very common approach, but has a major flaw
 - The observations are of the real physical system $\zeta(.)$
 - And the simulator is invariably imperfect: $\eta(.,\theta) \neq \zeta(.) \forall \theta$

Model discrepancy

We should write

 $z_i = \zeta(x_i) + \varepsilon_i = \eta(x_i, \theta) + \delta(x_i) + \varepsilon_i$

• where $\delta(.)$ is model discrepancy

and is an unknown function

• Inference about θ is now clearly more complex

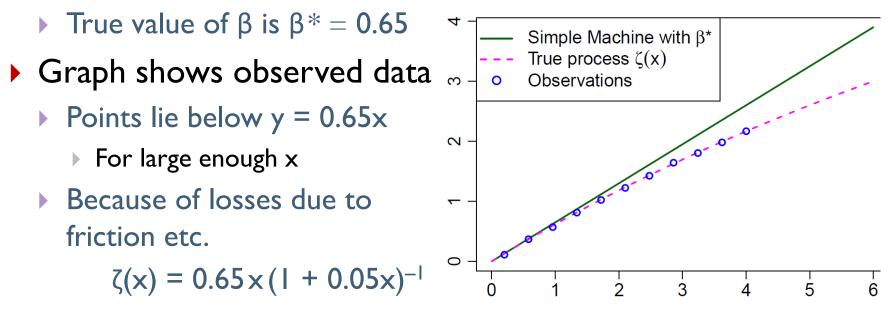
- No longer just a nonlinear regression problem
- Some literature on correlated errors
- How important is it?
 - That depends on the objectives of the inversion
 - And in particular on the nature of θ

Inversion and the nature of parameters

- Parameters may be physical or just for tuning
 - We adjust tuning parameters so the model fits reality better
 - We are not really interested in their 'true' values
 - Physical parameters are different
 - We are often really interested in true physical values
- What are we inverting for?
 - To learn about physical parameter values
 - Model discrepancy is hugely important and needs care and thought
 - To predict reality within context and range of observations
 - Interpolation: model discrepancy is important but easily addressed
 - To predict reality outside context/range of observations
 - Extrapolation: discrepancy hugely important, needs care and thought

Example 1: A simple machine (SM)

- A machine produces an amount of work y which depends on the amount of effort x put into it
 - Ideally, $y = \beta x$
 - Parameter β is the rate at which effort can be converted to work
 - It's a physical parameter

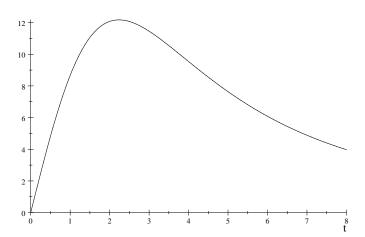


Example 2: Hot and cold (HC)

- An object is placed in a hot medium
 - Initially it heats up but then cools as the medium cools
- Simulator

 $\eta(t,\theta) = \theta_1 t \exp(-\theta_2 t)$

- Reality $\zeta(t) = |0t(| + t^2/|0)^{-1.5}$
- Parameters are physical



- θ_1 is initial heating rate, a property of the object
- \blacktriangleright θ_2 controls the cooling, a property of the medium and setup
- Interested in parameters but also in
 - Maximum temperature ζ_{max} and time t_{max} when max is reached

Meaning of parameters

- What is the relationship between parameters and reality?
 - They don't appear in $\zeta(.)$
 - > In the SM example, β is the gradient at the origin
 - Theoretical efficiency only achievable at low inputs
 - This is well defined for reality, $\beta = 0.65$
 - In the HC example, θ_1 is the gradient at the origin
 - Again well defined, $\theta_1 = 10$
 - θ_2 is more difficult because in reality cooling is not exponential
 - We define $\theta_2 = 0.413$ from log gradient at point of inflection
 - ζ_{max} and t_{max} are not really physical
 - From the simulator, $\zeta_{max} = \theta_1 \theta_2^{-1} e^{-1}$, $t_{max} = \theta_2^{-1}$
 - In reality, $\zeta_{max} = 12.172$ and $t_{max} = 2.236$ depend on θ and the setup

Ignoring model discrepancy

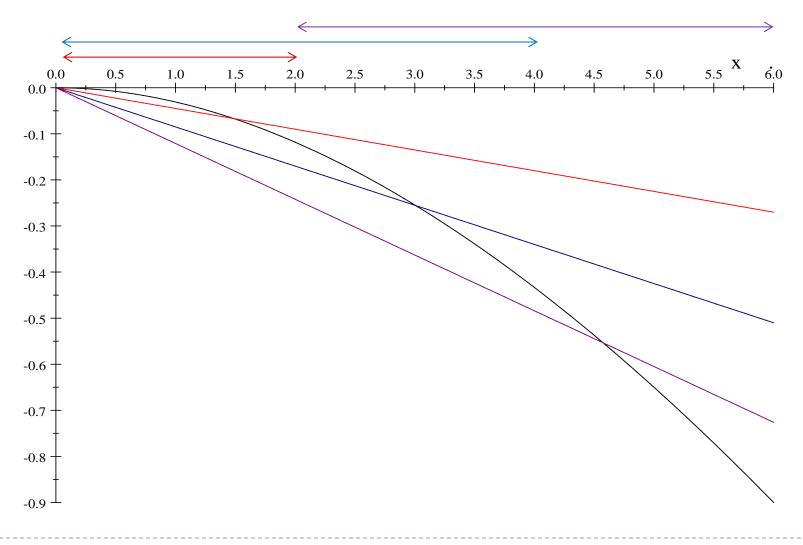
SM assuming no discrepancy

Following the usual approach, inversion is a simple matter of linear regression through the origin

 $z_i = \beta x_i + \varepsilon_i$

Here are some results from various sample sizes spread uniformly over 3 ranges of x values

Range	[0.1,2]	[0.1,4]	[2,6]
n=II	0.549 (0.063)	0.562 (0.029)	0.533 (0.023)
n=31	0.656 (0.038)	0.570 (0.017)	0.529 (0.011)
n=91	0.611 (0.021)	0.571 (0.012)	0.528 (0.007)
n infinite	0.605 (0)	0.565 (0)	0.529 (0)



HC assuming no discrepancy

- These results are from samples of 91 observations over three different ranges
 - Almost every single posterior distribution is concentrated far from the true value

Range	[0.1,1]	[0.2,2]	[0.4,4]	TRUE
θ1	10.57 (0.11)	. (0. 3)	12.77 (0.19)	10
θ₂	0.159 (0.049)	0.237 (0.023)	0.401 (0.033)	0.413
t _{max}	5.00 (0.47)	3.61 (0.13)	2.52 (0.04)	2.24
ζ _{max}	19.42 (1.55)	14.75 (0.38)	11.85 (0.08)	12.17

The problem is completely general

- Inverting (calibrating, tuning, matching) a wrong model gives parameter estimates that are wrong
 - Not equal to their true physical values biased
 - With more data we become more sure of these wrong values
- The SM and HC are trivial models, but the same conclusions apply to all models
 - All models are wrong
 - In more complex models it is just harder to see what is going wrong
 - Even with the SM, it takes a lot of data to see any curvature in reality
- What can we do about this?

The Simple Machine and Model Discrepancy

UQ + inverting imperfect models, Delft, 8/4/2016

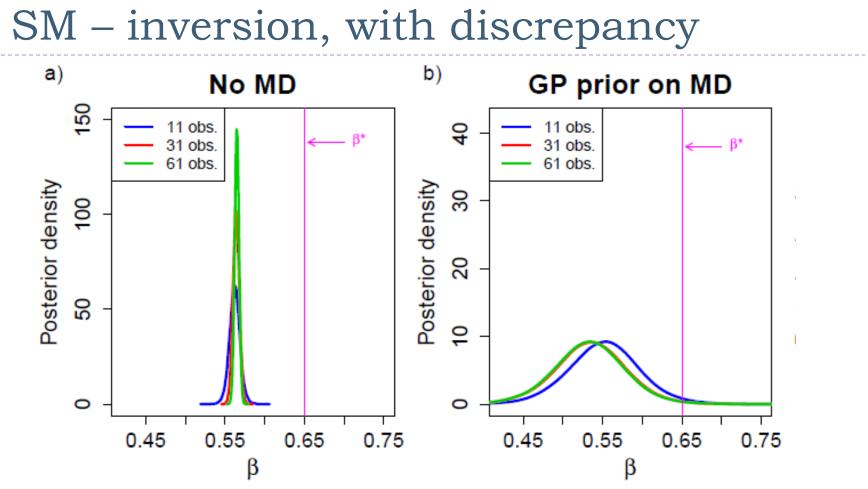
SM revisited

Kennedy and O'Hagan (2001) introduced discrepancy δ(.)

- Modelled it as a zero-mean Gaussian process
- They claimed it acknowledges additional uncertainty
- \blacktriangleright And mitigates against over-fitting of θ
- So add this model discrepancy term to the linear model of the simple machine

 $z_i = \beta x_i + \delta(x_i) + \varepsilon_i$

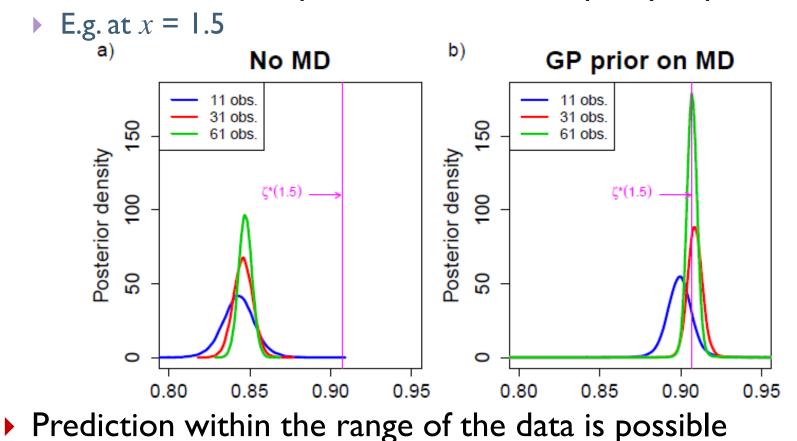
- With $\delta(.)$ modelled as a zero-mean GP
- Posterior distribution of β now behaves quite differently
- Results here from extensive study of SM in
 - Brynjarsdóttir, J. and O'Hagan, A. (2014). Learning about physical parameters: The importance of model discrepancy. *Inverse Problems*, **30**, 114007 (24pp), November 2014.



- Posterior distribution much broader and doesn't get worse with more data
 - But still misses the true value

Interpolation

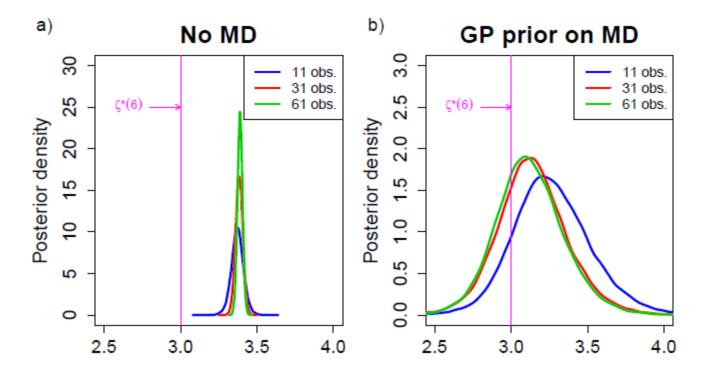
Main benefit of simple GP model discrepancy is prediction



• And gets better with more data

But when it comes to extrapolation ...

• ... at *x* = 6



More data doesn't help because it's all in the range [0, 4]
Prediction OK here but gets worse for larger x

Extrapolation

One reason for wish to learn about physical parameters

- Should be better for extrapolation than just tuning
- Without model discrepancy
 - The parameter estimates will be biased
 - Extrapolation will also be biased
 - Because best fitting parameter values are different in different parts of the control variable space
 - With more data we become more sure of these wrong values
- With GP model discrepancy
 - Extrapolating far from the data does not work
 - No information about model discrepancy
 - Prediction just uses the (calibrated) simulator

We haven't solved the problem

- With simple GP model discrepancy the posterior distribution for θ is typically much wider
 - Increases the chance that we cover the true value
 - But is not very helpful
 - And increasing data does not improve the precision
- Similarly, extrapolation with model discrepancy gives wide prediction intervals
 - And may still not be wide enough
- What's going wrong here?

Nonidentifiability

- Formulation with model discrepancy is not identifiable
- For any θ , there is a $\delta(x)$ to match reality perfectly
 - Reality is $\zeta(x) = \eta(x, \theta) + \delta(x)$
 - Given θ and $\zeta(x)$, model discrepancy is $\delta(x) = \zeta(x) \eta(x, \theta)$

Suppose we had an unlimited number of observations

- We would learn reality's true function (x) exactly
 - Within the range of the data
 - Interpolation works
- But we would still not learn θ
 - It could in principle be anything
- And we would still not be able to extrapolate reliably

The joint posterior

- Inversion leads to a joint posterior distribution for θ and $\delta(x)$
- But nonidentifiability means there are many equally good fits (θ, δ(x)) to the data
 - Induces strong correlation between θ and $\delta(x)$
 - This may be compounded by the fact that simulators often have large numbers of parameters
 - (Near-)redundancy means that different θ values produce (almost) identical predictions
 - Sometimes called equifinality
- Within this set, the prior distributions for θ and $\delta(x)$ count

The importance of prior information

- The nonparametric GP term allows the model to fit and predict reality accurately given enough data
 - Within the range of the data
- But it doesn't mean physical parameters are correctly estimated
 - The separation between original model and discrepancy is unidentified
 - Estimates depend on prior information
 - Unless the real model discrepancy is just the kind expected a priori the physical parameter estimates will still be biased
- To learn about θ in the presence of model discrepancy we need better prior information
 - And this is also crucial for extrapolation

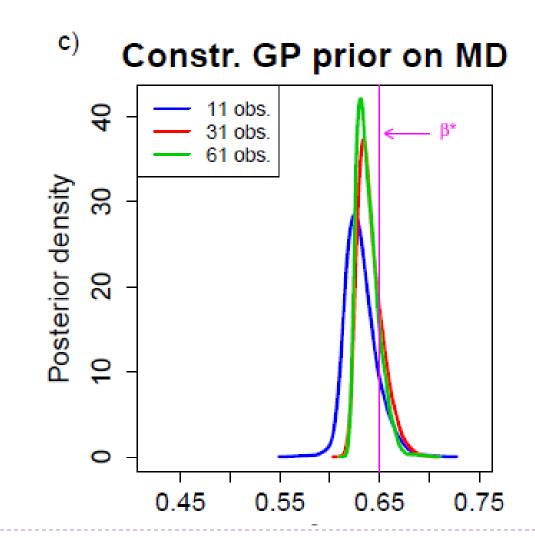
Better prior information

For calibration

- Prior information about θ and/or $\delta(x)$
- We wish to calibrate because prior information about θ is not strong enough
- So prior knowledge of model discrepancy is crucial
 - In the range of the data
- For extrapolation
 - All this plus good prior knowledge of $\delta(x)$ outside the range of the calibration data
 - That's seriously challenging!
 - In the SM, a model for $\delta(x)$ that says it is zero at x = 0, then increasingly negative, should do better

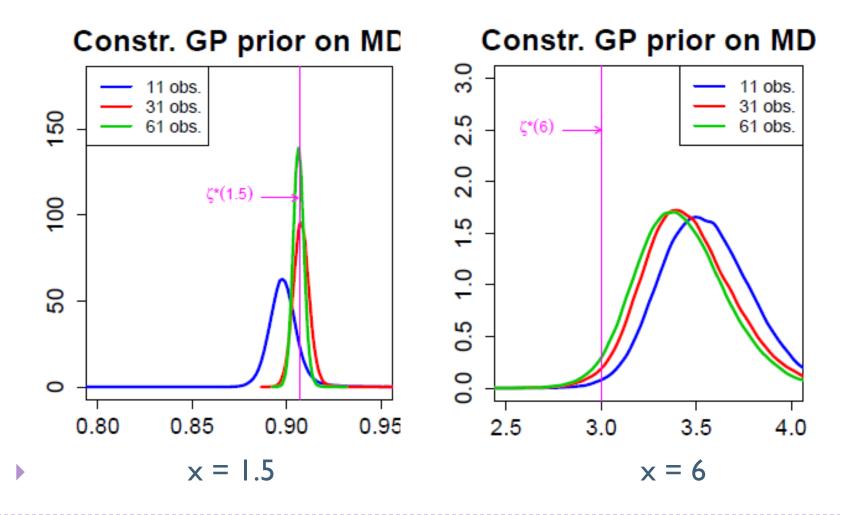
Inference about the physical parameter

- We conditioned the GP
 - $\flat \ \delta(0) = 0$
 - $\bullet \ \delta'(0) = 0$
 - $\delta'(0.5) < 0$
 - $\delta'(1.5) < 0$



UQ + inverting imperfect models, Delft, 8/4/2016

Prediction



UQ + inverting imperfect models, Delft, 8/4/2016

Conclusions

UQ + inverting imperfect models, Delft, 8/4/2016

Summary

- Without model discrepancy
 - Inference about physical parameters will be wrong
 - > And will get worse with more data
 - The same is true of prediction
 - Both interpolation and extrapolation
- With crude GP model discrepancy
 - Interpolation inference is OK
 - And gets better with more data
 - But we still get physical parameters and extrapolation wrong
- The better our prior knowledge about model discrepancy
 - The more chance we have of getting physical parameters right
 - Also extrapolation
 - But then we need even better prior knowledge