

HaWaSSI

Hamiltonian Wave-Ship-Structure Interaction

Brenny van Groesen

University of Twente & LabMath-Indonesia

Analytic Boussinesq

Andonowati Lie She Liam Andy Schauf Nida Latifah Ruddy Kurnia

Variational Boussinesq Model

Gert Klopman Ivan Lakhturov Didit Adytia Wenny Kristina Mourice Woran

0

Sea states from radar images

Andreas Wijaya

LabMath-Indonesia (Bandung)

Modelling & simulation

- Many codes available for 'wave' simulations (irrotational flow)
 - > Full Euler codes : CFD
 - Approximate models to avoid direct calculation of interior Laplace problem, e.g.
 - > SWASH (vertical layers),
 - Boussinesq-type equations (dispersion approx. with algebraic diff.operator)
- > With HaWaSSI we aim to exploit some basic math structures:
 - Dynamics is Hamiltonian system in surface variables (Boussinesq, exact energy conservation)
 - Laplace ←→ Dirichlet principle
 → consistent approximation in functional, symmetry in eqn's
- > Two versions:
 - > AB: Fourier expansion (global \rightarrow local), exact dispersion
 - > VBM: pcw-lin splines in FE, optimized dispersion

Contents

Show performance Explain math background

Simulations for Coastal Engineering applications

Essential topics for simulation WAVES

- DISPERSION (from deep sea to run-up at the coast)
- Nonlinearity, Breaking & set-up, freak waves
- Coastal run-up and harbour entrance
- Infragravity waves (for LNG in shallow water)

> SHIP

Motion (in waves), ship-interactions, near quay

> Mooring

Ship waves (entering harbour, coast)

Comparison with experiments

Test Cases & simulations

- Validation wave tank (1HD)
 - Irregular waves above Varying bottom
 - Freak waves, Focussing waves
 - Deep water breaking
 - Bathymetry induced breaking
- Validation wave basin (2HD)
- Harbour: Limassol Other simulations (2HD)
 - Cilacap: infragravity waves
 - Jakarta sea dike

Irregular waves, MARIN Bench 103001

FREAK WAVES

3hrs time signal, approx. 1000 waves
Period: 12s, Hs= 3m

Comparison Exp-Simul at W2, W9, W12, W15 and W17

FW-analysis MARIN

102003

date	18-Jun-11	02-Jul-11
wavename	102003_w	102003_w
Depth		
PeakPeriod	8.26	
Wavelength	101.55	
HsTot	3.07	
DynModel	NONlin	ABv LINEAR
Freak analysis		
Xfr	-6051.08	-6190.52
Tfr	8561.65	8542.13
Crestheight	4.94	4.07
Troughdepth	-2.98	-2.90
Waveheight	7.92	6.97
WH/Hs	2.58	2.27

Linear compared to nonlinear:
earlier in time: 20[s], shorter distance 140[m] (group velocity)
crest height 0.9 m lower, through

0.08 m less deep

NONIIN SIMULATIONS

LINEAR SIMULATIONS

MARIN

Wave Focussing

Design and pre-calculation experiment TUD wave tank

Wave breaking

Focussing k_p.a=0.11 TUD1403Foc7

CREST JIP 223002F (MARIN) Tp:12 S (Breaking), 9hrs ; Crel≈1.5

Exceedance plots for breaking waves

Wave breaking over a trapezoidal bar

Bound Harmonic Generation Phenomenon (Wave Decomposition)

Beji and Battjes Experiment (1993) : Periodic Wave Plunging Breakers case (f=0.4 Hz)

Symbols : measurements, line: simulation

Transition from undular to purely breaking bore

Spilling wave breaking above a slope (Exp. Ting & Kirby 1994)

Correlation

s1	s2	s 3	s4	s5	s6	s7	s8	s9	s10
0,97	0,97	0,98	0,98	0,99	0,95	0,97	0,98	0,98	0,95
s11	s12	s13	s14	s15	s16	s17	s18	s19	s20
0,96	0,96	0,97	0,97	0,96	0,94	0,94	0,91	0,91	0,84

Crel≈35 \rightarrow ≈5 for simulation time 60 s :

- multiple breaking continue over 5 period.
- small spatial discretization (170 points per wavelength)

-1

-1

-0.5

0.5

0

UNIVERSITY OF TWENTE. **Embedded reflective interfaces 2D**

INDONESIA

embedded "cylinder" normalized potential wall

-0.06

-0.08

1.5

2HD Refraction & Diffraction (Berkhoff 1982)

Physical experiment : Harbour of Limassol

Application

> Infra-Gravity calculation for gas-oil offshore industry, e.g.

Location

Sumatra

Indonesia

Java

Wave condition @FSRU ?Infragravity waves?

Simulations for Coastal Engineering applications

[m]

-2

-4

-6 -8

-10 -12

-14

-16

-18

-20

-22

135°

Main

A

Infragravity waves; Period \in [25s, 5min]

[%]

Jakarta, water problem

Witteveen+Bos

The force of the tsunami destroys a sea wall designed to protect the Fukushima nuclear plant and surges towards the reactors

Tsunami by 1883 Krakatau explosion

Initial Condition: Inverse Problem

Find generation scenario

Simulation matches measurements near Batavia

Maeno & Immamura [2011] :

Reconstruction 1883 Krakatau Tsunami

10

Water Wave Theory

Basic Equations Fluid Dynamics 17th Newton 18th Euler

18th Laplace, Cauchy, Airy Conservations : Mass and momentum Compressible, incompressible flows

> Initial value problem, Linear wave theory

Theory and Models 19th Stokes, Boussinesq Korteweg –de Vries (KdV) Scott Russel

Nonlinear Waves, Spatial reduction (Surface water wave model), uni-directional waves.

Variational theory Hamiltonian formulation 20th Bateman, Luke, Zakharov Broer, Miles Equations on surface, model interior. Consistent modelling

Hamiltonian Dynamics of surface waves, BASICS

Interior

Water is inviscid \rightarrow No dissipation, 'Conservative'

Water is incompressible (constant density)
 ASSUME flow is irrotational

Free surface

Assume pressure free atmosphere
 Kinematic cn'd: continuity equation
 Bernoulli equation

Observation: can be described as system in

ClassMechanics, *in surface variables only*

- Canonical variables
- Hamiltonian = Total Energy

Difficulty

KINETIC ENERGY

Approach (do NOT solve Laplace problem) Consistent modelling through Dirichlet principle

$$\operatorname{div} U = 0$$

$$\operatorname{curl} U = 0 \implies U = \nabla \Phi(x, y, z) \qquad \Delta \Phi(x, y, z) = 0$$

Bateman, Luke, Zakharov

Broer, Miles

$$\partial_t \eta(x, y, t) = U \cdot N = \partial_N \Phi(x, y, \eta(x, t))$$

 $\partial_t \Phi(x, y, \eta(x, t), t) = \dots$

$$\begin{aligned} & \left[\eta(x, y, t) \right] \\ & \phi(x, y, t) = \Phi(x, y, \eta(x, t), t) \\ & H(\phi, \eta) = K(\phi, \eta) + \frac{1}{2} g \iint \eta^2(x, y) dx dy \end{aligned} \qquad \begin{array}{l} \partial_t \eta = \delta_\phi H(\phi, \eta) \\ \partial_t \phi = -\delta_\eta H(\phi, \eta) \\ & KE = \iint \int_{-D}^{\eta} \frac{1}{2} |U|^2 dz dx dy = ?? = K(\phi, \eta) \\ & K(\phi, \eta) = Min \Biggl\{ \iint \int_{-D}^{\eta} \frac{1}{2} |\nabla \Phi|^2 dz dx dy \middle| \Phi = \phi \text{ at } z = \eta \Biggr\} \end{aligned}$$

Consistent approximation Kinetic Energy

Analysis

Dirichlet's principle (1840)

$$K(\phi,\eta) = Min\left\{ \iint_{-D}^{\eta} \frac{1}{2} \left| \nabla \Phi \right|^2 dz dx dy \left| \Phi = \phi \text{ at } z = \eta \right\} \right\}$$

Dirichlet-to-Neumann operator

$$\delta_{\phi} K(\phi, \eta) = \partial_N \Phi \text{ at } z = \eta$$

Consistent approximations

$$K(\phi,\eta) = \frac{1}{2g} \int (C\partial_x \phi)^2 dx \qquad \qquad \delta_{\phi} K(\phi) = -\frac{1}{g} \partial_x C^2 \partial_x \phi$$

C is phase velocity operator

Approximate:

VBM: low-dim vertical structure, Finite Elements

AB: analytic with FIO (Fourier-Integral Operators), spatial-spectral

VBM Approximation Kinetic Energy (Avoid calculation of potentials in interior)

$$D(\Phi) = \iint_{-D} \int_{-D}^{\eta} \frac{1}{2} |\nabla \Phi|^2 dz dx dy \qquad K(\phi, \eta) = Min\{D(\Phi)|\Phi = \phi \text{ at } z = \eta\}$$

Consistent VBM-approximation: restrict minimizing set of functions

> Use as Ansatz $\Phi(x,z) = \phi(x) + F(z)\psi(x)$, with $F(\eta) = 0$; then $\Phi(x,\eta) = \phi(x)$

> Take
$$F(z)$$
 an Airy function $F(z) = 1 - \frac{\cosh(\kappa(z+D))}{\cosh(\kappa D)}$ with parameter κ

> Inserted in K leads to $K = K(\phi, \psi, \eta, \kappa)$

> Then
$$\delta_{\psi} K(\phi, \psi, \eta, \kappa) = 0$$
, elliptic eqn $\Rightarrow \psi = \psi(\phi)$
 $K_{VBM} = K(\phi, \psi(\phi), \eta, \kappa)$

> Optimize parameter κ depending on initial spectrum ! $\kappa \to K(...,\kappa) = \frac{g}{2} \int V_{VBM}(k(\omega),\kappa) S_0(\omega) d\omega$

Combination of Airy functions possible to improve dispersion

Dispersive properties of Optimized VBM

AB- Approximation Kinetic Energy (Avoid calculation of potentials in interior)

$$D(\Phi) = \iint_{-D} \int_{-D}^{\eta} \frac{1}{2} |\nabla \Phi|^2 dz dx dy \qquad K(\phi, \eta) = Min\{D(\Phi) | \Phi = \phi \text{ at } z = \eta\}$$

Consistent AB-approximation (spatial-spectral)

$$z = \eta(x, y) \qquad \Phi = \phi$$

$$z = \zeta(x, y) \qquad \Delta \Phi(x, z) = 0$$

$$\partial_n \Phi = 0 \qquad \partial_n \Phi = 0$$

$$K(\phi,\eta) = \frac{1}{2g} \int (C\partial_x \phi)^2 dx$$

C is phase velocity operator
$$\delta_{\phi} K(\phi) = -\frac{1}{g} \partial_x C^2 \partial_x \phi$$

Linear Airy theory: exact (dispersion) in strip

 $C^2 \stackrel{\text{s}}{=} \frac{g \tanh(kD)}{k} \qquad \delta_{\phi} K(\phi) \stackrel{\text{s}}{=} k \tanh(kD) \hat{\phi}(k) \quad \text{Pseudo-Diff-Operator}$

> Shallow water $C^2 = g(D(x) + \eta(x,t)) \quad \delta_{\phi} K(\phi) = -\partial_x (D + \eta) \partial_x \phi$

> 2nd order above
$$D(x) C^2 \doteq \left[g \tanh(kH) / k \right]_{symm}$$
 with $H = D(x) + \eta(x,t)$ Fourier-Int-Operator

Conclusions

- > AB and VBM in horizontal variables only (Boussinesq reduction)
 - Practical use of Dirichlet principle by consistent approximation:
 - \rightarrow all symmetry properties are retained, robust
 - > AB: FIO's are 'expensive' but efficient approximation by *interpolation* techniques
 - > VBM: optimized dispersion, more profiles more expensive
- Performance is satisfying/good compared to experiments; at present:
 - > AB most suitable for wave tank simulations ('fast')
 - ➤ VBM for coastal applications
- Extension to wave-ship interaction in progress

Announcement: HaWaSI VBM and AB will become available in 2015 (advanced options for tailor-made license)

We like to hear your coastal eng problems and are interested to collaborate

Marine science in Netherlands: MARIN and Delft (TUD and Deltares) Math-contribution at universities decreases rapidly (←→ SRO water)

The advancement of Mathematics has profited tremendously from study of Fluid Mechanics / waves

> Asymptotics:

- >bdy-layers \rightarrow (matched) asymptotic expansions
- ➤ WKB asymptotics
- characteristics (Hamilton-Jacobi)
- ➤ Infinite dimensionality → Hilbert (Courant & Hilbert)
 - functionals (var principles Maupertuis, Euler/Dirichlet)
 - ➢ gen solutions pde: shock relations
- > Dyn. System theory & pde
 - ➤ complete integrability ('65 KdV)
 - Nonlinearity: Fermi Pasti-Ulam
 - Topological study of nonlin problems (Poincare, Lax)

> Numerics:

- > fem (static \rightarrow dynamic),
- > vof (balance laws),
- Kruskal & Zabusky '67

> Modelling:

- ➤ balance (conservation) laws
- optimization formulations
- Ham-consistent modelling & numerics

MathProfits

Acknowledgements

Recent Publications

- R. Kurnia & EvG, MARHY 2014, Chennai
- Lie S Liam, D. Adytia & EvG, Ocean Eng. 2014
- R. Kurnia & EvG, Coastal Eng. 2014
- D. Adytia & EvG, J. Coastal Eng. 2012
- EvG & Andonowati, Wave Motion 2011
- A.L. Latifah & EvG, Nonlin. Processes Geophys 2012
- EvG & I. van der Kroon, Wave Motion 2012
- I. Lakhturov & EvG, Wave Motion 2011
- G. Klopman, EvG, M.Dingemans, J. Fluid Mech 2010
- L. She Liam & EvG, Physics Letters A 2010
- N. Karjanto & EvG, J. Hydro-environment Research 2010
- EvG, Andonowati, L. She Liam & I. Lakhturov, J. Comp. and Appl. Math 2010
- D. Adytia & EvG, APAC2009 World Scientific 2010, Vol. 1
- N. Karjanto & EvG, Handbook of Solitons, Nova Science 2009
- EvG & Andonowati, Physics Letters. A 2007

Acknowledgements

и

