

Challenging wind and waves

Linking hydrodynamic research to the maritime industry

SHIPS, WAVES AND MATH

Mathematics & Water, Deltares, 13 November 2014 MARIN, Ed van Daalen

CONTENTS

- MARIN
- Application of math to ship hydromechanics
- Conclusions

MARITIME RESEARCH INSTITUTE NETHERLANDS

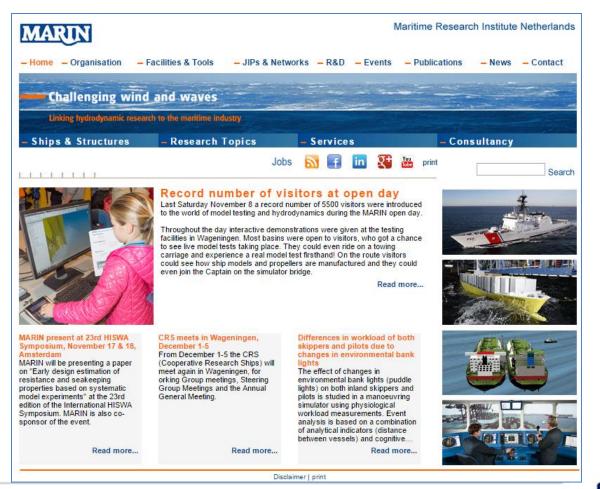
- hydrodynamic research for maritime industry, nonprofit
- founded 1929, 7 model basins, 350 employees, 42 M€ turnover
- model tests, trials & full scale monitoring, simulations
- international market: design companies, shipyards, classification, ship operators

MARIN ORGANISATION

- Ships: powering & resistance, seakeeping, manoeuvring for all ship types
- Offshore: on/offloading, drilling platforms, windmill installation
- Nautical Simulator: harbour design, training
- Trials and Monitoring: full scale measurements
- Software: simulation
- Production: model factory, instrumentation
- Research and Development: fundamental developments in experiments and simulations

LEARN MORE ABOUT MARIN

- www.marin.nl (nice company video!)
- www.youtube.com/marinmultimedia



MARIN

Life can be beautiful ...

....

.............

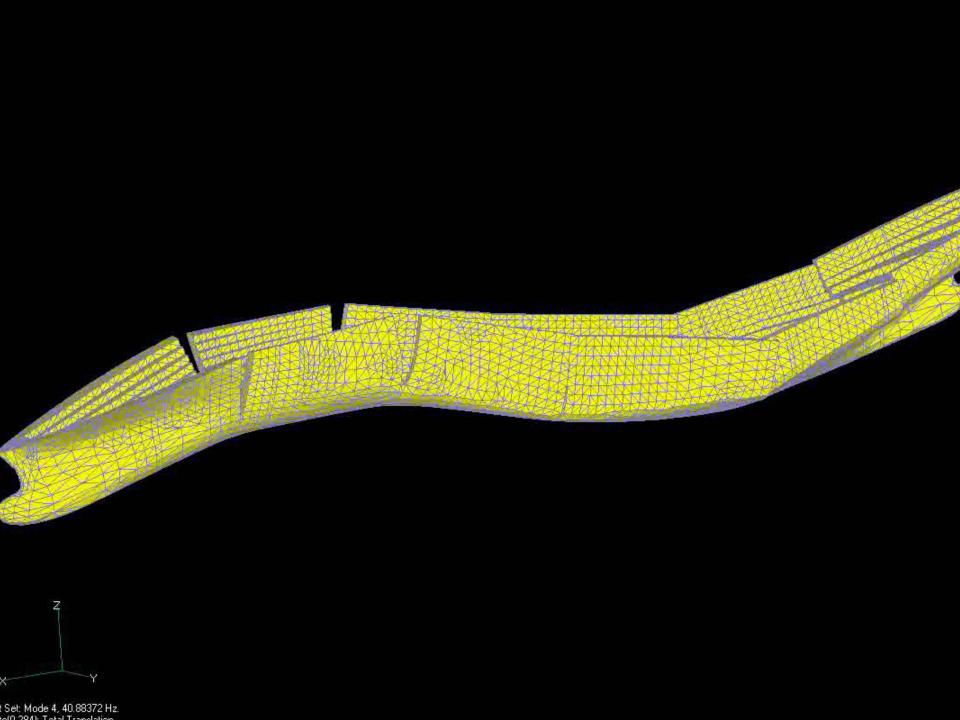
.

advis. B

... BUT SOMETIMES LIFE IS HORRIBLE ...

- Herald of Free Enterprise
- Estonia
- Costa Concordia

How can we help to avoid this?



LNG carriersSloshing in liquid cargo tanks

É E TAITAR How can we help?

heavy cargostructural(off)loading

How can we help?

UNDER HORS

bad weather

- high waves
- high loads

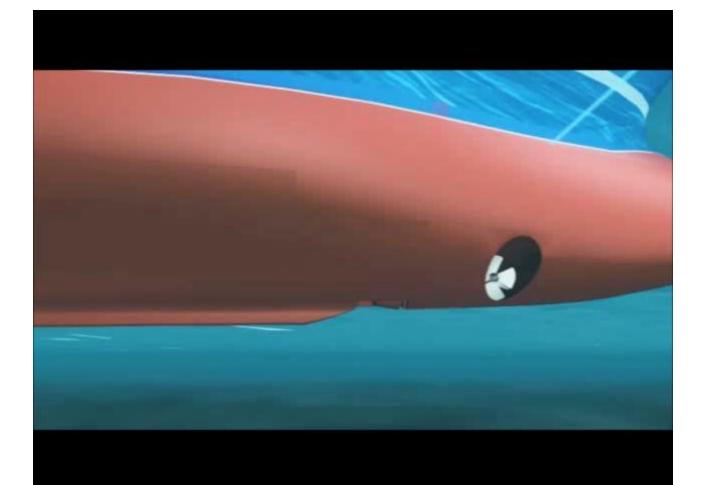
How can we help?

bad weathercomfortoperabilitysafety

How can we help?

Selkirk Settler - North Atlantic Pic: Capt. George Ianiev

THRUST ALLOCATION

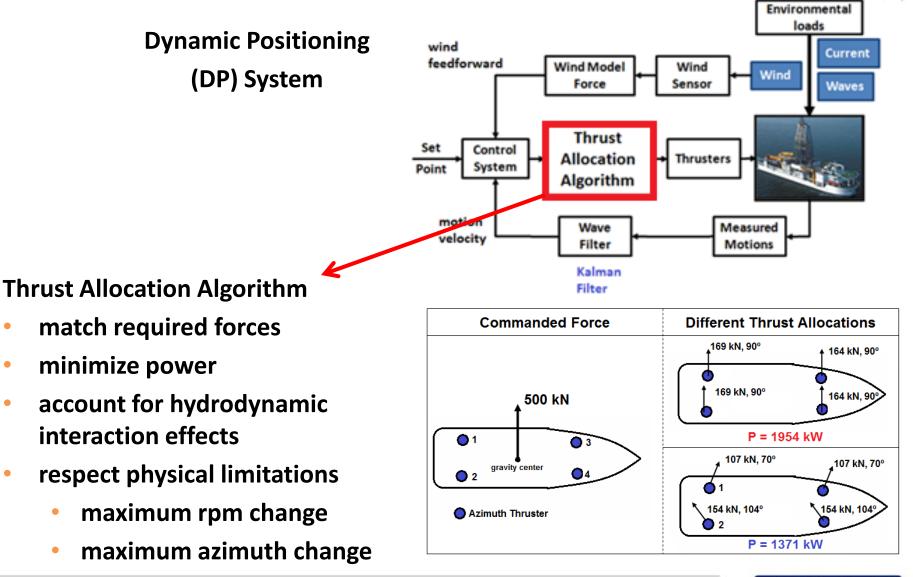


_

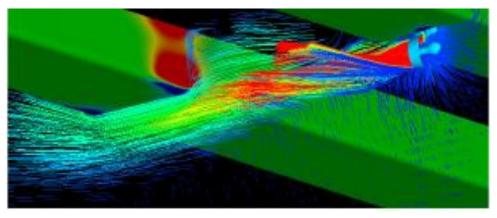
THRUST ALLOCATION - OBJECTIVES

•

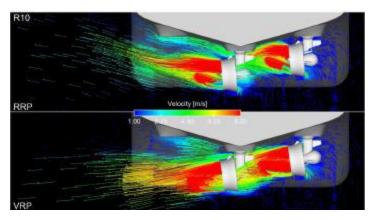
•



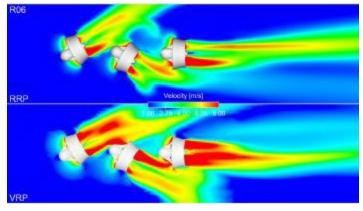
THRUST ALLOCATION – INTERACTION EFFECTS



thruster-hull interaction

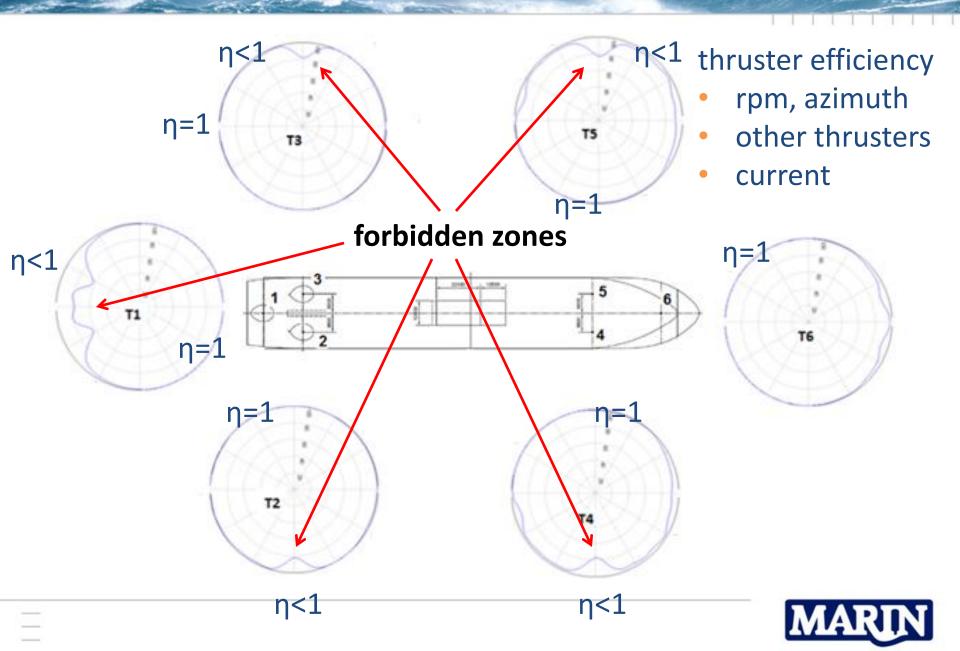


thruster-thruster interaction

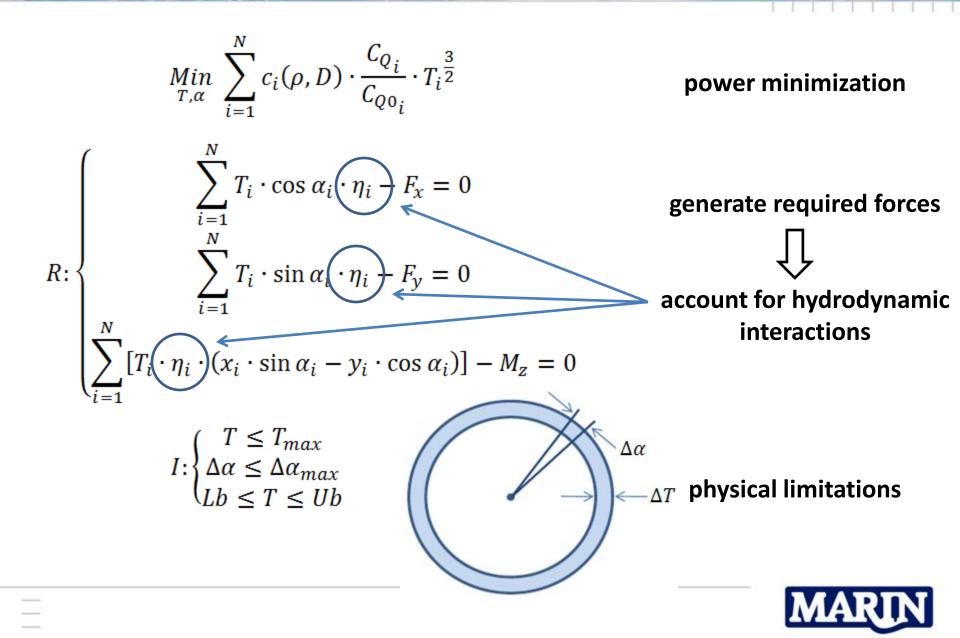


thruster-current interaction

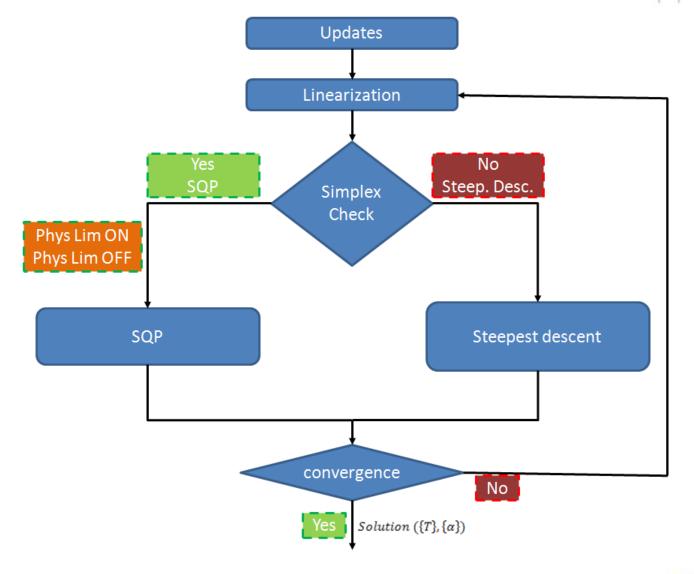
THRUST ALLOCATION - EFFICIENCY FUNCTIONS



THRUST ALLOCATION - OPTIMIZATION PROBLEM

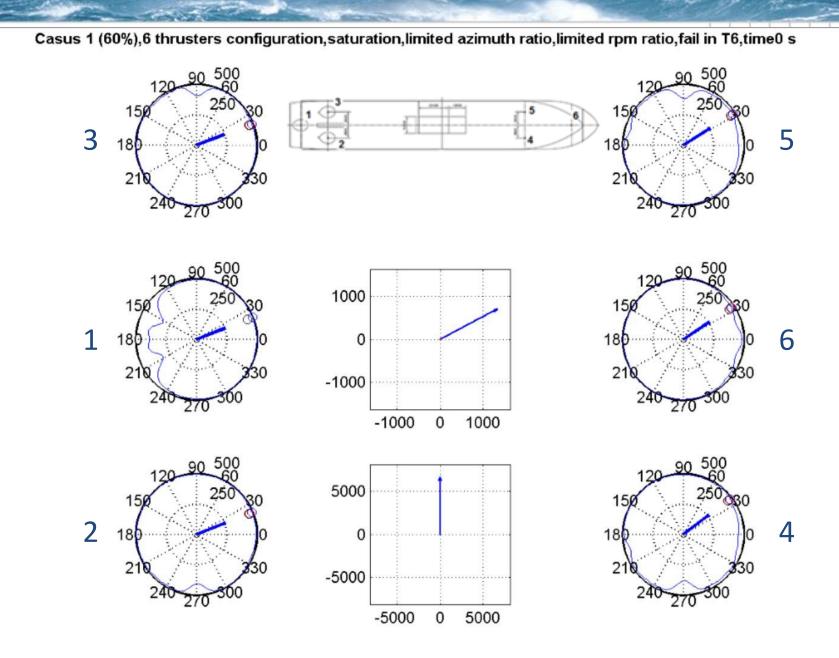


THRUST ALLOCATION - ALGORITHM



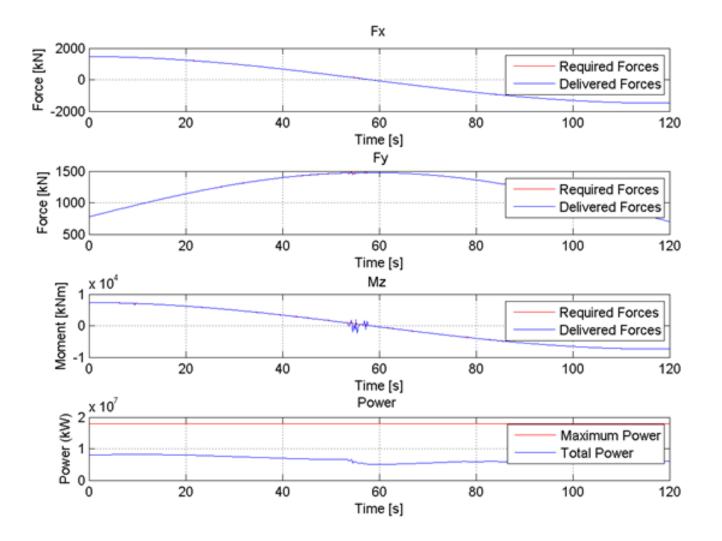
19 Bar

THRUST ALLOCATION - CROSSING FORBIDDEN ZONES

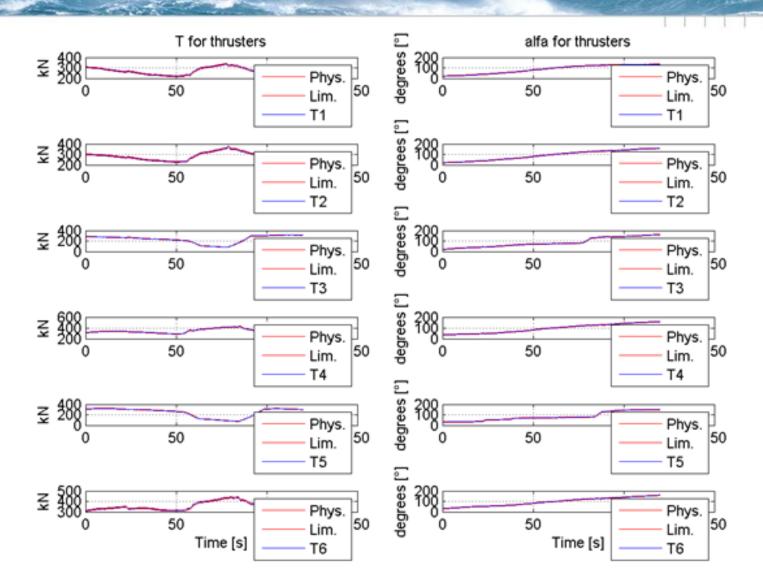


1

THRUST ALLOCATION – MATCH REQUIREMENTS



THRUST ALLOCATION – RESPECT PHYSICAL LIMITS



MANOEUVERING EQUATIONS

MARIN

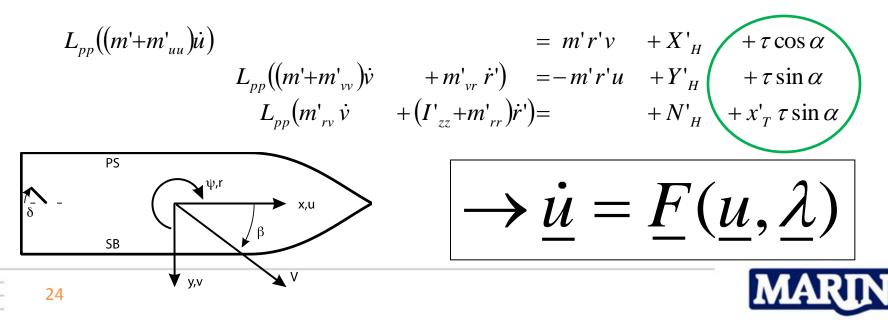
research started at SWI 2011

MANOEUVERING EQUATIONS – MATHEMATICAL MODEL

- maneuvering model: set of <u>coupled</u> ordinary differential equations (ODEs) describing *ship motions in calm water*, including <u>nonlinear hull forces</u> and <u>nonlinear propulsion forces</u>
- many hull parameters (~ 30) and propulsion parameters (~ 20) involved
- many of these parameters are determined by experiments (scale models) and CFD

MANOEUVERING EQUATIONS – MATHEMATICAL MODEL

- Propeller-Rudder Model: used in MARIN maneuvering simulation program SURSIM
 - $L_{pp}((m'+m'_{uu})\dot{u}) = m'r'v + X'_{H} + X'_{R} + X'_{P}$ $L_{pp}((m'+m'_{vv})\dot{v} + m'_{vr}\dot{r}') = -m'r'u + Y'_{H} + Y'_{R}$ $L_{pp}(m'_{rv}\dot{v} + (I'_{zz}+m'_{rr})\dot{r}') = +N'_{H} + N'_{R}$
- (simplified) Thruster Model:



MANOEUVERING EQUATIONS - SOLUTIONS

$$\underline{\dot{u}} = \underline{F}(\underline{u}, \underline{\lambda})$$

obvious thing to do = direct simulation

 \rightarrow time integration with initial conditions

- constant propulsion parameters: e.g. straight line, turning circle
 - NOTE for these motions $\dot{\underline{u}} = \underline{0}$
- time-dependent propulsion parameters: e.g. zig-zag manoeuver
 - NOTE for these periodic motions $\dot{u} \neq 0$

MANOEUVERING EQS - NUMERICAL CONTINUATION

Alternative: Numerical Continuation Method

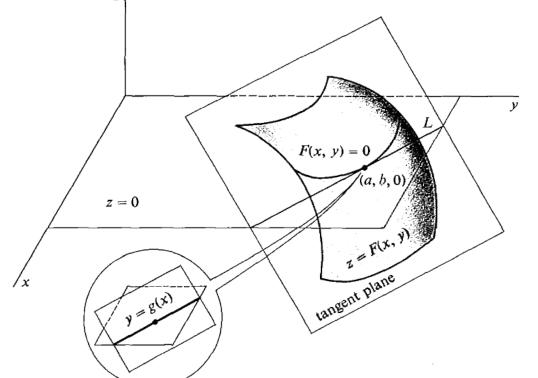
NCM = a robust and fast method to

- find parameter-dependent set of 'equilibria' of ODEs
 (equilibrium = steady / stationary state solution)
- determine stability properties of equilibria
- find bifurcations and e.g. trace periodic solutions
 (bifurcation = transition from stable to unstable)

MANOEUVERING EQS - NUMERICAL CONTINUATION

NCM is based on Implicit Function Theorem, stating that

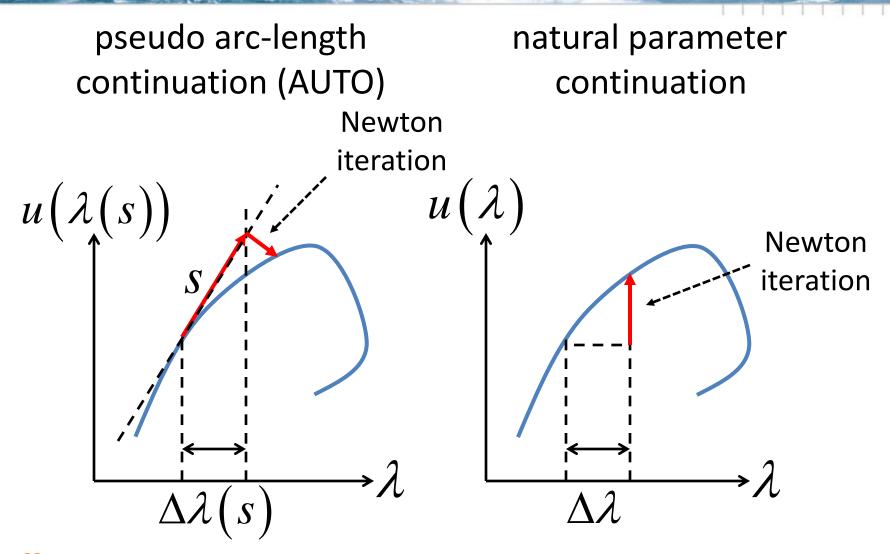
« relations can be transformed into functions »



 $\underline{\dot{u}} = \underline{F}(\underline{u},\underline{\lambda}) \longrightarrow \underline{0} = \underline{F}(\underline{u},\underline{\lambda})$

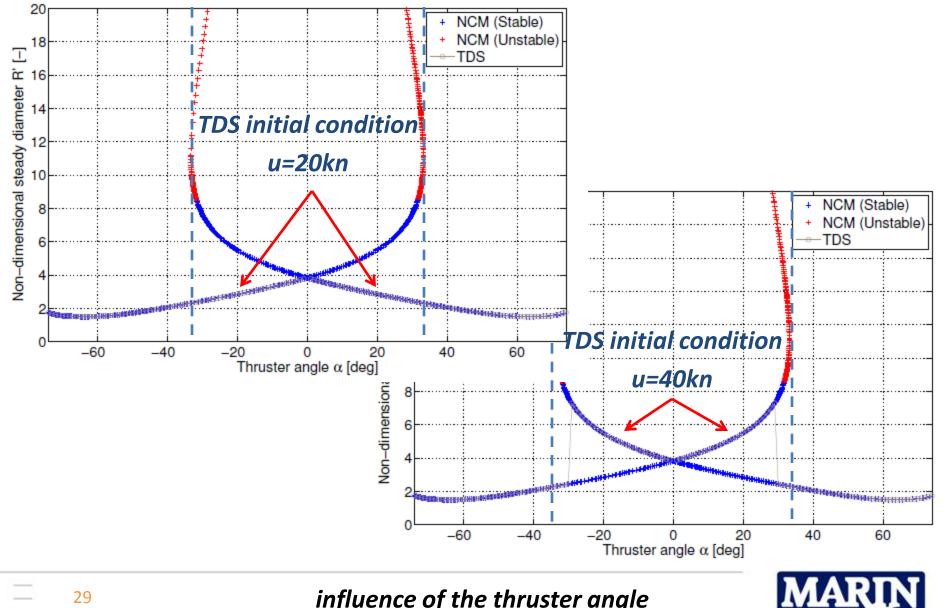
<u>*u*</u>: n-vector (state variables, n=3, 4) $\underline{\lambda}$: continuation parameters (select 1)

MANOEUVERING EQUATIONS - NCM WITH AUTO



28

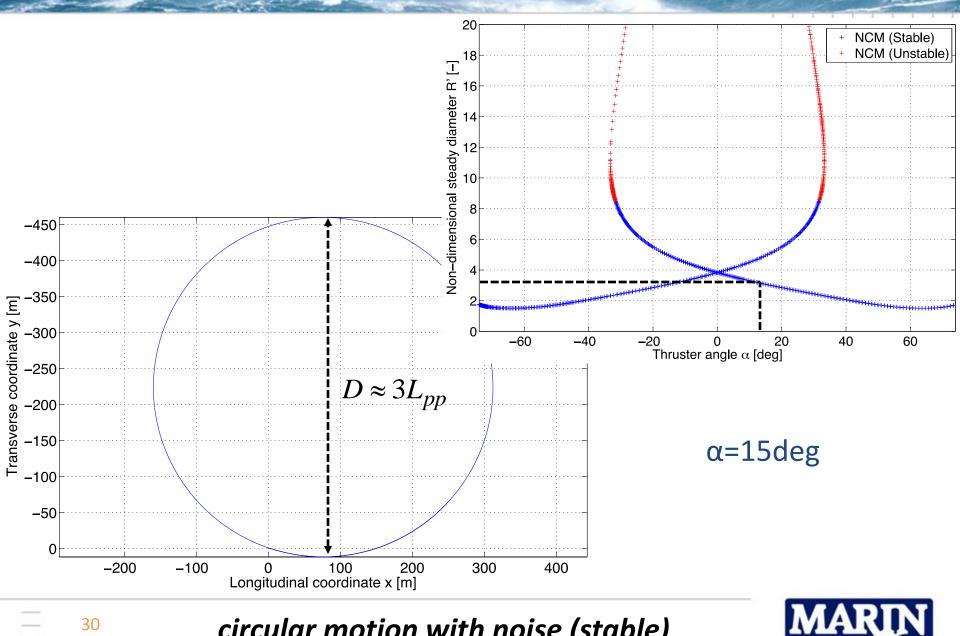
MANOEUVERING EQUATIONS - TURNING CIRCLE



influence of the thruster angle

29

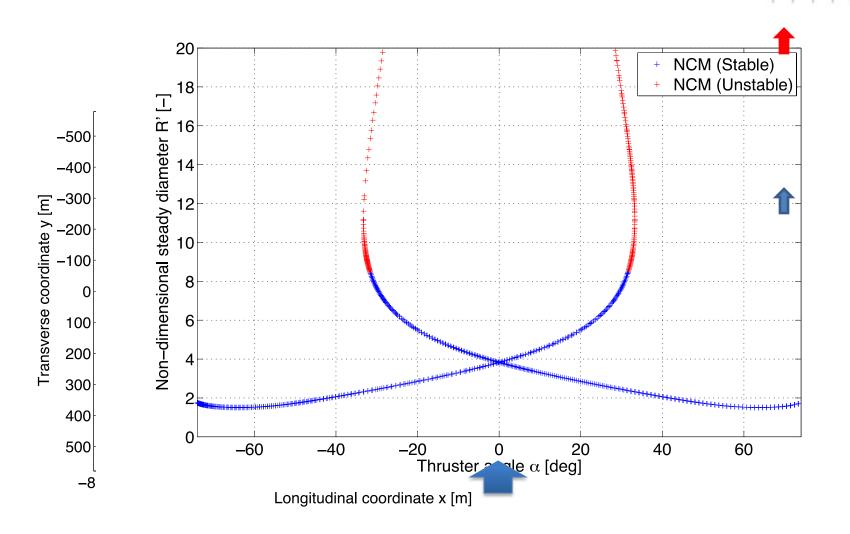
MANOEUVERING EQUATIONS - TURNING CIRCLE



30

circular motion with noise (stable)

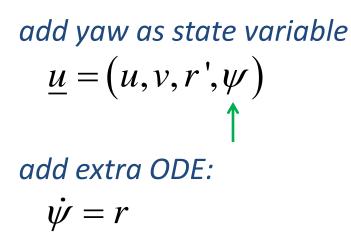
MANOEUVERING EQUATIONS - STRAIGHT LINE



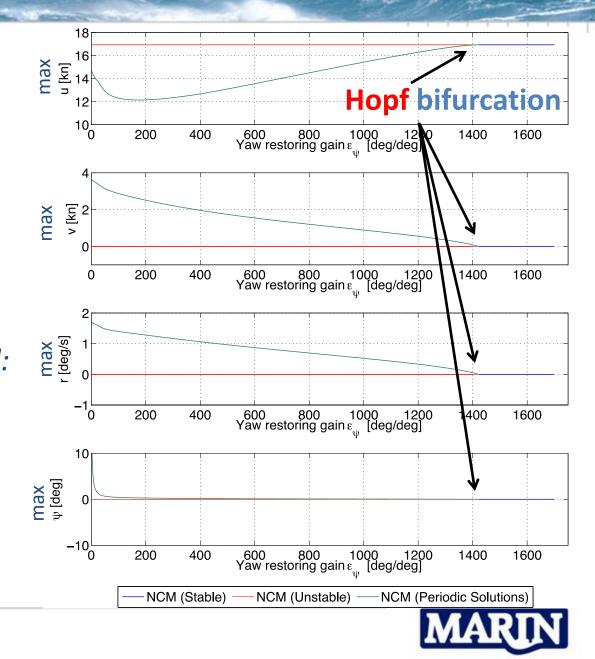
MARIN

straight line motion with noise (unstable)

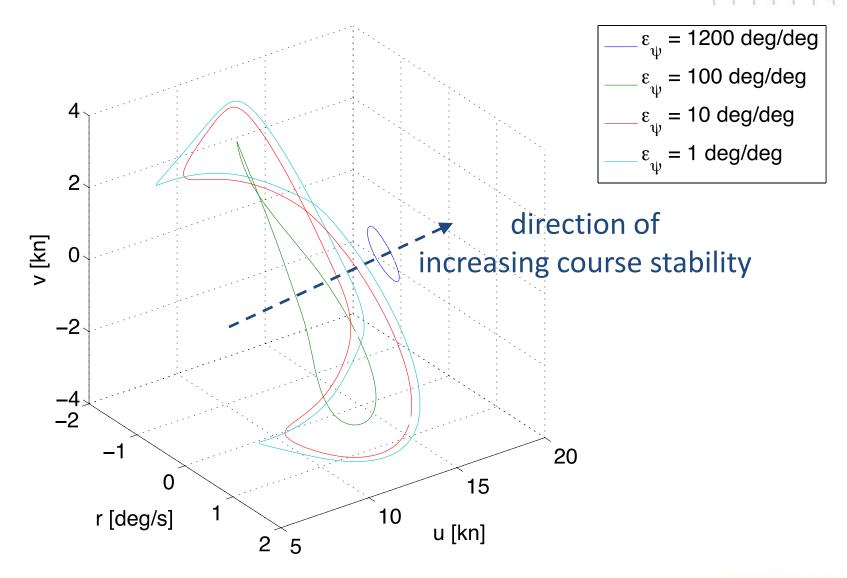
MANOEUVERING EQUATIONS - YAW CONTROL



add yaw restoring control: $\alpha = \alpha_0 + \varepsilon_{\psi} (\psi - \psi_0)$ $\alpha_0 = 0$ (α is a parameter, not a state variable!)



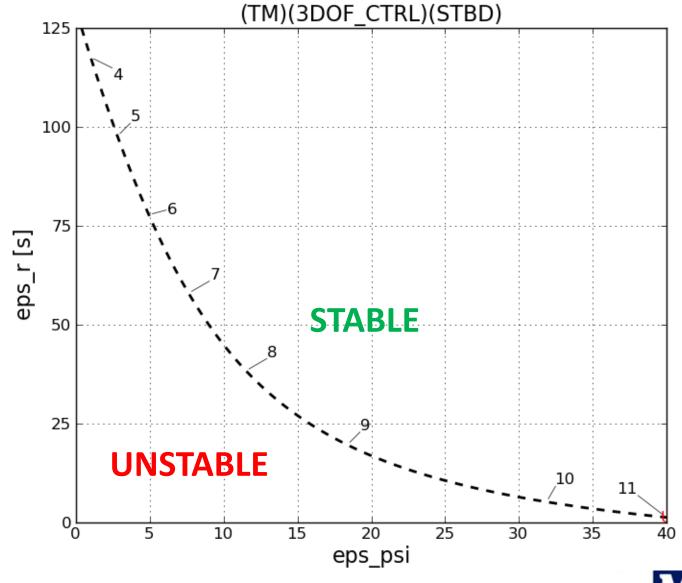
MANOEUVERING EQUATIONS - YAW CONTROL



33

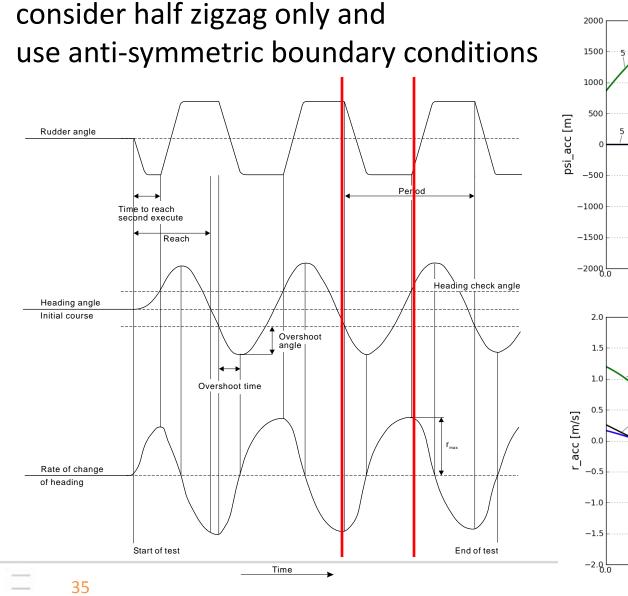
ship velocities for several periodic solutions

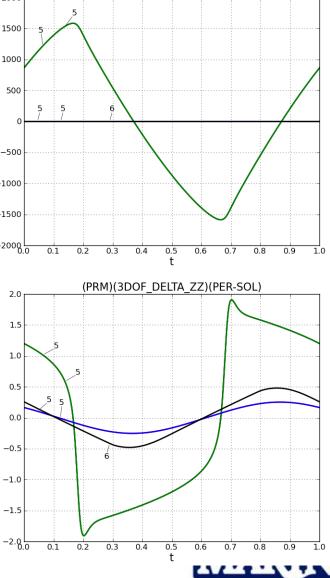
MANOEUVERING EQUATIONS - YAW CONTROL



³⁴ with AUTO it is easy to trace out the stability boundary ...

MANOEUVERING EQUATIONS - ZIGZAG





(PRM)(3DOF DELTA ZZ)(PER-SOL)

PARAMETRIC ROLLING

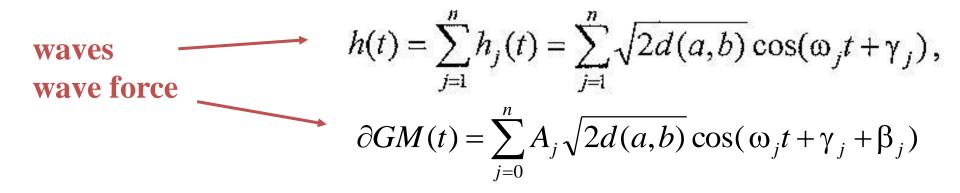
PARAMETRIC ROLLING

What happens if a container ship experiences large roll angles ?

PARAMETRIC ROLLING - SIMPLE ODE MODEL

simulation over large time intervals

 $(I+A)\ddot{\phi} + B(\dot{\phi})\dot{\phi} + C(t)\phi = 0 \quad C(t) = \rho g V (GM + \partial GM(t))$



transfer coefficients for amplitude change and phase shift of waves acting upon metacentric height: $A_i = A(\omega_i)$ $\beta_i = \beta(\omega_i)$

PARAMETRIC ROLLING - EXIT TIME STRATEGY

exit time strategy:

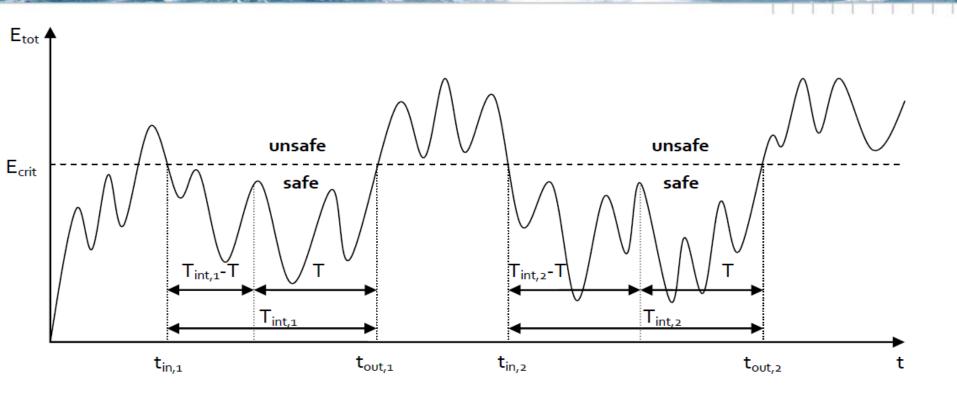
• very long time domain simulation

$$(I+A)\ddot{\phi} + B(\dot{\phi})\dot{\phi} + C(t)\phi = 0$$
 $C(t) = \overline{C} + \rho g V \partial GM(t)$

• observe energy
$$E(\phi, \dot{\phi}) = \frac{1}{2}(I+A)\dot{\phi}^2 + \frac{1}{2}\overline{C}\phi^2$$

• define critical amplitude and critical energy $E_{\rm crit} = \frac{1}{2} \bar{C} \varphi_{\rm crit}^2$

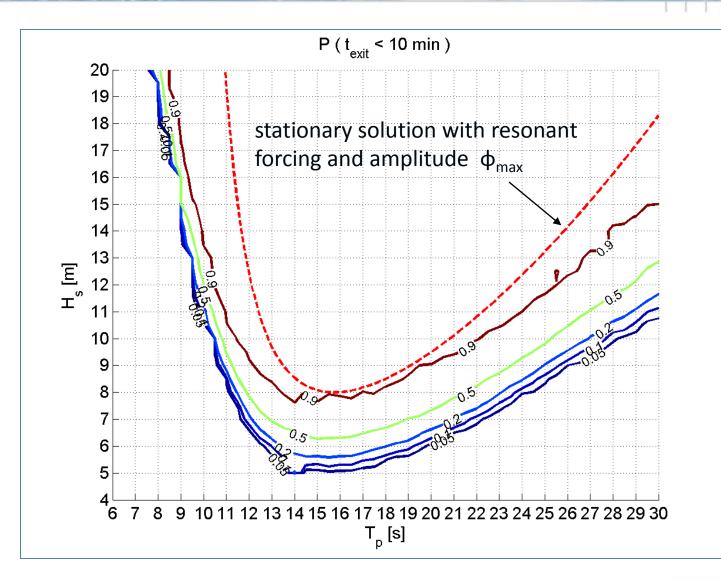
PARAMETRIC ROLLING - EXIT TIME STRATEGY



Fraction of runs arriving within time T at E_{crit} : $q(T) = \min\left(\frac{T}{T_{\text{int}}}, 1\right)$

Weighted average over all safe zones: $\hat{q}(T)$

PARAMETRIC ROLLING - PROBABILITY

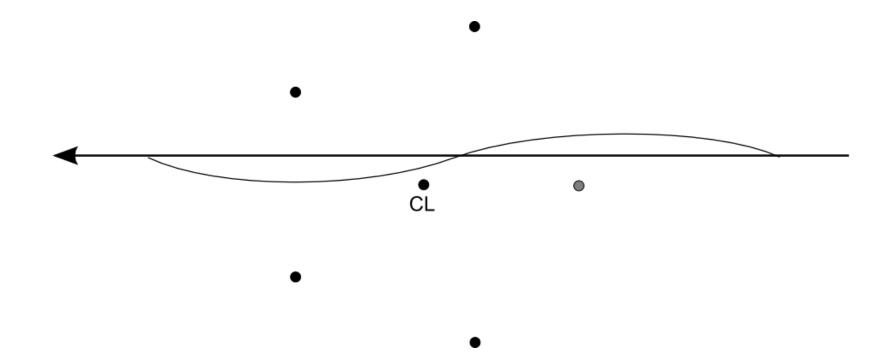


long crested waves are 'easy':

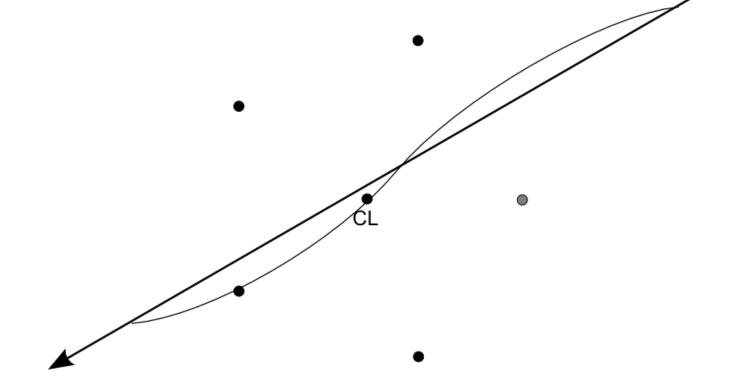
- to analyse
- to simulate

however: real waves are short crested

find wave spreading functions that match theoretical and measured wave height distributions

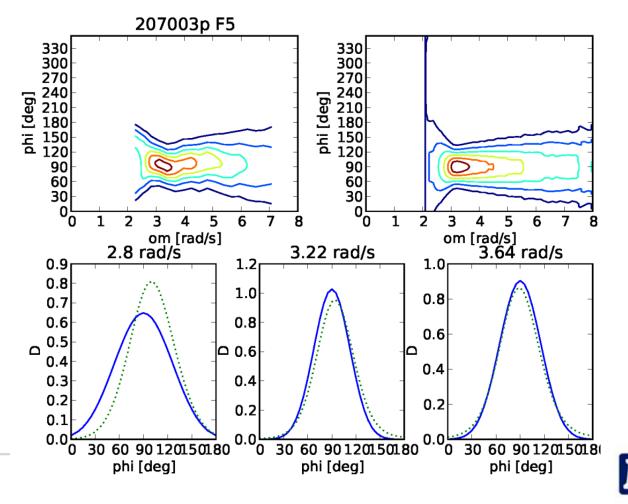


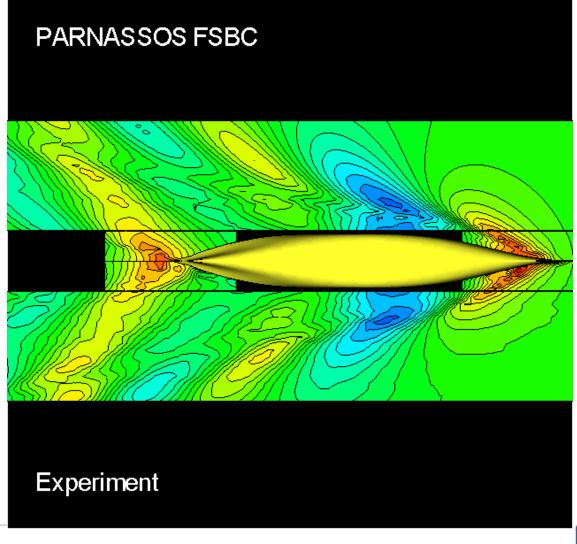
find wave spreading functions that match theoretical and measured wave height distributions



wave calibration using Maximum Likelihood Method

→ find wave spreading functions that match measured cross spectra with theoretical wave height transfer function





Consider plane surface waves on 2D uniform flow. Linearise in these waves. They are represented by Fourier components:

$$\overline{q} \equiv \begin{pmatrix} u \\ w \\ \psi \end{pmatrix} = \iint \begin{pmatrix} \widehat{u} \\ \widehat{w} \\ \widehat{\psi} \end{pmatrix} e^{\imath kx + sz} dk ds$$

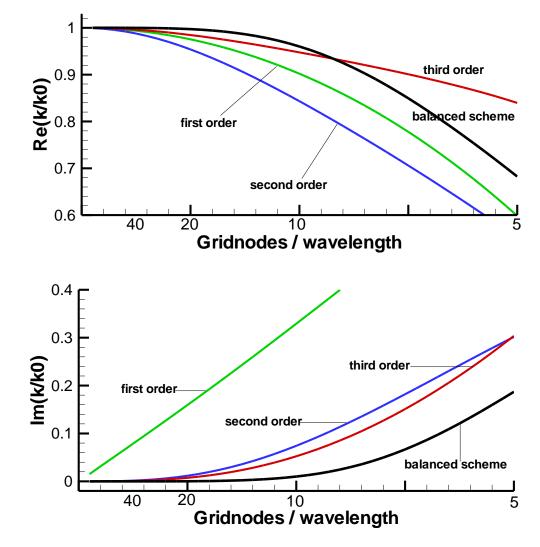
Substitute this in the linearised and discretised RANS equations:

$$L_h \cdot \overline{q} = \iint \hat{L}_h(k,s) \cdot \hat{q} e^{\imath k x + s z} dk ds = 0$$

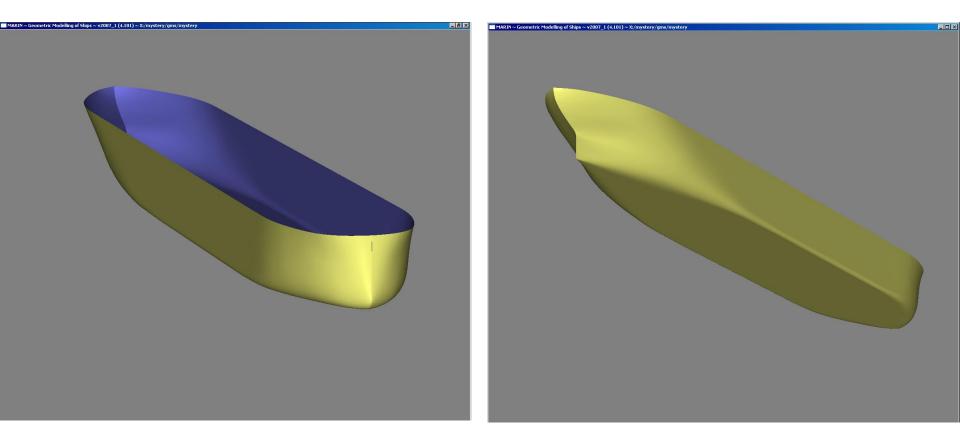
 L_h = RANS-operator, \hat{L}_h = discrete Fourier symbol of this operator Non-trivial solution only exists if determinant of \hat{L}_h vanishes.

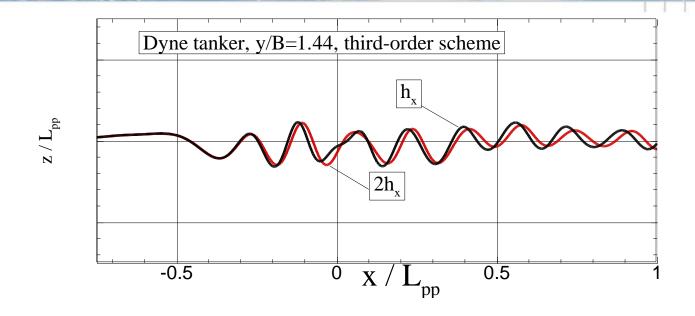
- Continuous problem: wave number $k_0 = 1 / F n^2$
- Discretised problem: wave number k , dependent on all difference schemes used.
- Damping and dispersion determined by k / k_0
- Dispersion determined by real part
- Damping determined by imaginary part

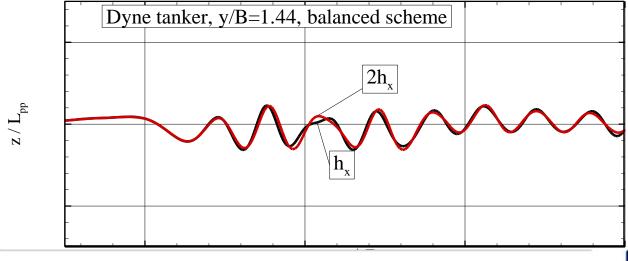
- Standard:
 2nd-order dispersion,
 3rd-order damping
- It is possible to design a *dp/dx* scheme for the FSBC that cancels leading-order error terms from other difference schemes: 'Balanced scheme': 3rd-order dispersion, 5th-order damping



Dyne tanker, Fn=0.165, Cb=0.87 model scale: 553x121x45 = 3.0M cells, full scale: 553x161x45 = 4.0M cells







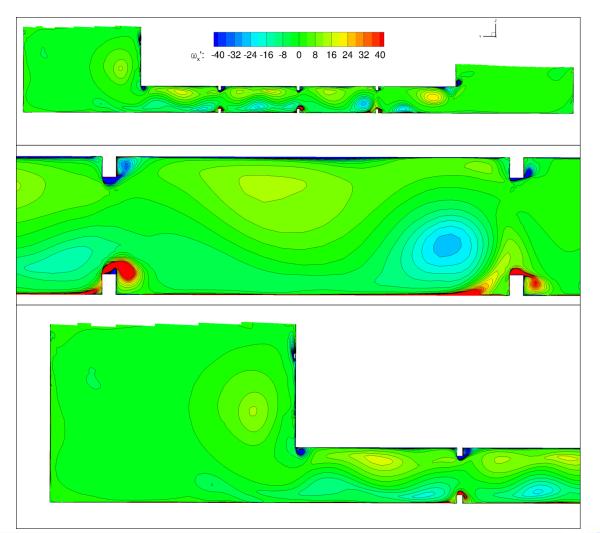
ANTI-ROLL TANKS

empty tank

filled tank

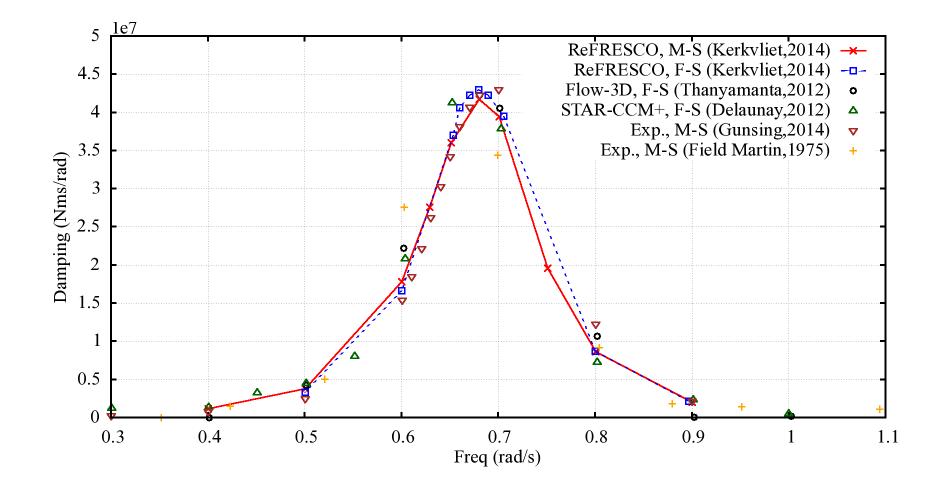
52

ANTI-ROLL TANKS – CFD U-TANK INTERNAL FLOW



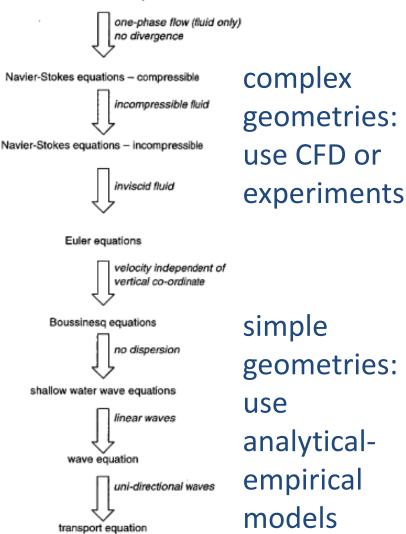
53

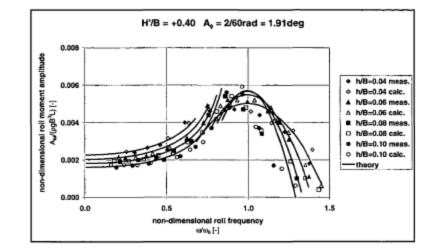
ANTI-ROLL TANKS – VALIDATION OF CFD

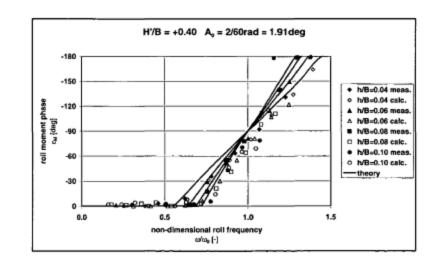


ANTI-ROLL TANKS - COMPLEX OR SIMPLE APPROACH ?

full scale / model scale experiments

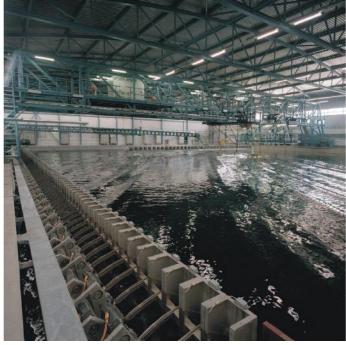






55

- rectangular basin (44.8m x36m), adjustable depth up to 10 m
- individually controlled wave flaps on 2 sides (112/90)
- beaches on opposite sides
- wind and current
- due to the finite dimension of the basin, long crested waves are not entirely long crested
- reflections due to presence of test models (ships/offshore platforms) may affect test results



linearized potential flow model

 $\Delta \phi = 0$

$$\frac{\partial^2 \phi}{\partial t^2} + g \frac{\partial \phi}{\partial z} = 0$$
$$\frac{\partial \phi}{\partial n} = \vec{V} \cdot \vec{n}$$

frequency domain $F(t) = \hat{F} e^{-i\omega t}$

numerical solution: boundary element (panel) method with zero speed Green functions G(P,Q)

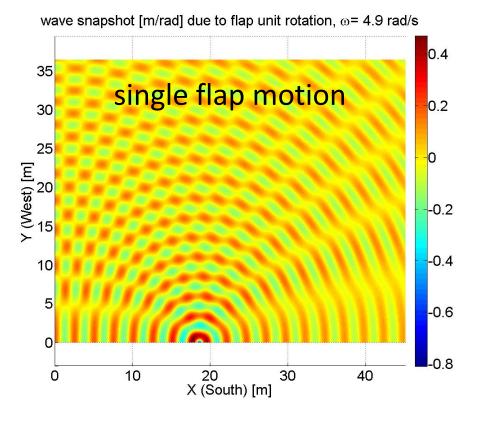
$$\begin{split} \phi^{j}(\mathsf{P}) &= \int_{\mathsf{S}} \sigma(\mathsf{Q}) \mathsf{G}(\mathsf{P},\mathsf{Q}) \mathsf{d}\mathsf{S} \\ \frac{\partial \phi^{j}(\mathsf{P})}{\partial \mathsf{n}} &= 2\pi \sigma(\mathsf{P}) + \int_{\mathsf{S}} \sigma(\mathsf{Q}) \frac{\partial \mathsf{G}(\mathsf{P},\mathsf{Q})}{\partial \mathsf{n}} \mathsf{d}\mathsf{S} \end{split}$$

discretization: constant source per panel

$$\phi^{j}(P) = \sum_{i=1}^{N} \sigma_{i} \int_{S_{i}} G(P,Q) dS$$

$$\frac{\partial \phi^{j}(P)}{\partial n} = 2\pi\sigma(P) + \sum_{i=1}^{N} \sigma_{i} \int_{S_{i}} \frac{\partial G(P,Q)}{\partial n} dS$$

use ship motion program to calculate basin waves (why not?) waves generated by flaps each flap is modeled as a separate moving body



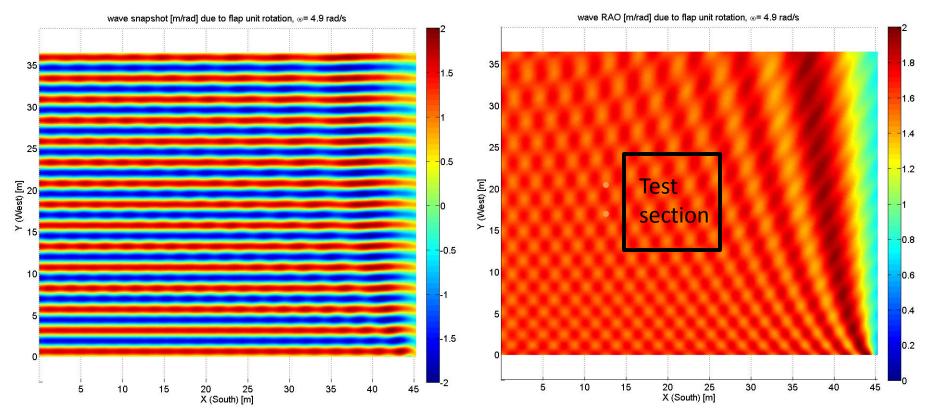
linear superposition of waves

$$\eta_{tot}(\mathbf{X}, \mathbf{Y}, \omega) = \sum_{k=1}^{Npaddle} A_k \eta_k(\mathbf{X}, \mathbf{Y}, \omega)$$

beaches are modeled as open boundaries (no reflections)

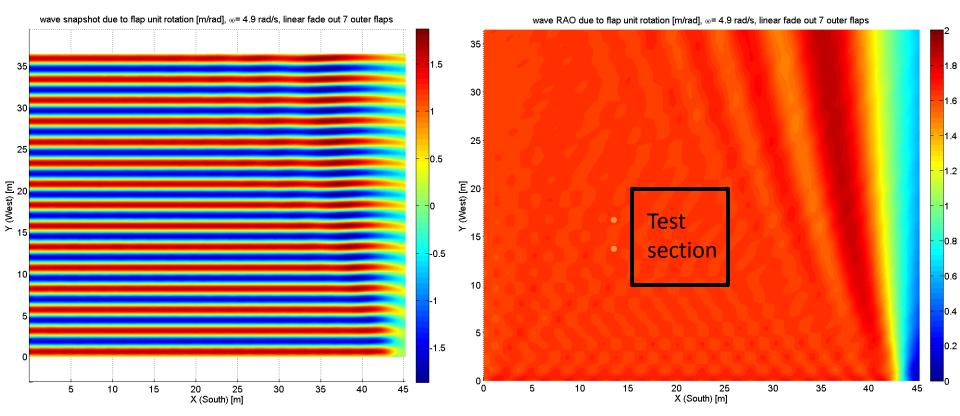
waves generated by all flaps on south side moving identically

\rightarrow this is not long-crested !!!



 \equiv

linear amplitude fade-out of outer 7 flaps (default solution in basin wave control software)



 \rightarrow already much better !!!

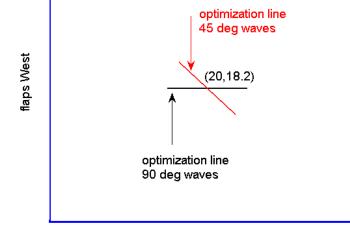
Can we do better than linear fade-out? Use optimization techniques!

Minimize the objective function $F(A_1...A_M) = \sqrt{\sigma(\eta_{tot,r})^2 + \sigma(\eta_{tot,i})^2}$

 $\eta_{tot,r}$ real part total wave elevation on optimization line

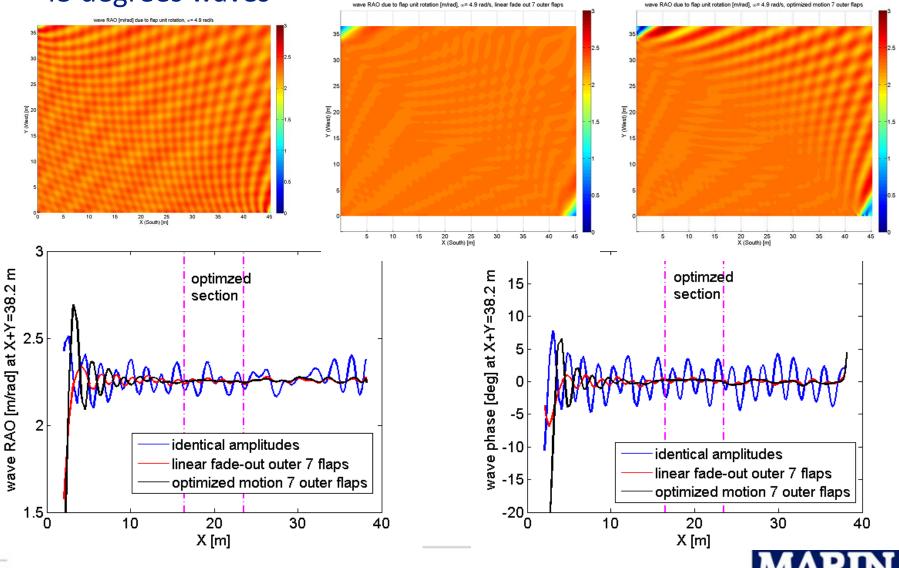
 $\eta_{tot,i}$ imaginary part total wave elevation on optimization line

 $A_1 \dots A_M$ complex amplitudes of M flap motions



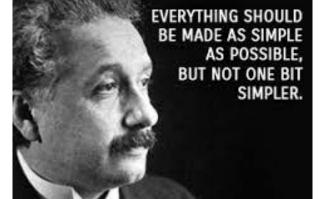
flaps South

45 degrees waves



CONCLUSIONS

- applied mathematics is *essential* for research on ship hydromechanics
- successful application of mathematics requires knowledge of mathematical solution techniques *and* understanding of physical / technical problems
- we need mathematicians that can think/talk/do (ship) hydromechanics and naval architects* that can think/talk/do (applied) mathematics, both at a sufficient level to 'reach out and touch'
- we need ability and courage to model:
 - reduce & assume
 - extrapolate & validate
 - think 'out of the box'
- * and people from other disciplines, of course



THANK YOU FOR YOUR ATTENTION !

 $\min P(T_i, \alpha_i)$ $\sum \eta_i F_{x,i} = F_{x,req}$ etc. ∬ pndS $\dot{U} = F(\underline{U}, \underline{\lambda})$ $\Delta \phi = 0$

MARIN P.O. Box 28 6700 AA Wageningen The Netherlands T +31 317 49 39 11 F +31 317 49 32 45 E info@marin.nl I www.marin.nl

