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MARITIME RESEARCH INSTITUTE NETHERLANDS 

• hydrodynamic research for maritime industry, nonprofit 

• founded 1929, 7 model basins, 350 employees, 42 M€ turnover 

• model tests, trials & full scale monitoring, simulations 

• international market: design companies, shipyards, classification, ship 
operators 

Wageningen 

Ede Houston 



MARIN ORGANISATION 

• Ships: powering & resistance, seakeeping, manoeuvring for all ship 
types 

• Offshore: on/offloading, drilling platforms, windmill installation 

• Nautical Simulator: harbour design, training 

• Trials and Monitoring: full scale measurements 

• Software: simulation 

• Production: model factory, instrumentation 

• Research and Development: fundamental developments in experiments 
and simulations 

 



LEARN MORE ABOUT MARIN 

• www.marin.nl (nice company video!) 

• www.youtube.com/marinmultimedia 

 

 



SCHEEPVAART 

 

Life can be beautiful … 



… BUT SOMETIMES LIFE IS HORRIBLE … 

• Herald of Free Enterprise 

• Estonia 

• Costa Concordia 

• … 

How can we help to avoid this? 



Very large ships are challenging 
• Hydrodynamics 
• Structural 
• Logistics 

 
How can we help ? 



 

LNG carriers 
• Sloshing in liquid cargo tanks How can we help ? 



 

heavy cargo 
• structural 
• (off)loading 
 

How can we help ? 



 

bad weather 
• high waves 
• high loads 

How can we help ? 



INTRODUCTION TO SHIP DESIGN (2) 

• Designed for specific seas or routes 
 

bad weather 
• comfort 
• operability 
• safety 

How can we help ? 



THRUST ALLOCATION 



THRUST ALLOCATION - OBJECTIVES 

Dynamic Positioning 

(DP) System 

Thrust Allocation Algorithm 

• match required forces 

• minimize power  

• account for hydrodynamic 
interaction effects 

• respect physical limitations 

• maximum rpm change 

• maximum azimuth change 

 



THRUST ALLOCATION – INTERACTION EFFECTS 

thruster-hull interaction 

thruster-current interaction 

thruster-thruster interaction 



THRUST ALLOCATION - EFFICIENCY FUNCTIONS 

forbidden zones 

thruster efficiency 
• rpm, azimuth 
• other thrusters 
• current 
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THRUST ALLOCATION - OPTIMIZATION PROBLEM 

power minimization 

generate required forces 
 
 

account for hydrodynamic 
interactions 

physical limitations 



THRUST ALLOCATION - ALGORITHM 



THRUST ALLOCATION - CROSSING FORBIDDEN ZONES 

1 

2 4 

5 

6 
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THRUST ALLOCATION – MATCH REQUIREMENTS 



THRUST ALLOCATION – RESPECT PHYSICAL LIMITS 



MANOEUVERING EQUATIONS 

research started at SWI 2011 
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• maneuvering model: set of coupled ordinary 
differential equations (ODEs) describing ship motions 
in calm water, including nonlinear hull forces and 
nonlinear propulsion forces 

 

• many hull parameters ( ~ 30 ) and propulsion 
parameters ( ~ 20 ) involved 

 

• many of these parameters are determined by 
experiments (scale models) and CFD 

MANOEUVERING EQUATIONS – MATHEMATICAL MODEL 
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• Propeller-Rudder Model: used in  MARIN maneuvering 
simulation program SURSIM 

 

 

 

• (simplified) Thruster Model: 

 

  
  
   

P

RH

RH

RH

rrzzrvpp

vrvvpp

uupp X

NN

YYurm

XXvrm

rmIvmL

rmvmmL

ummL '

''

''''

''''

''''

''''

'' 

























  
  
    





sin''

sin'''

cos'''

''''

''''

''

TH

H

H

rrzzrvpp

vrvvpp

uupp

xN

Yurm

Xvrm

rmIvmL

rmvmmL

ummL

























( , )u F u  

MANOEUVERING EQUATIONS – MATHEMATICAL MODEL 
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obvious thing to do = direct simulation 

→ time integration with initial conditions 

 

• constant propulsion parameters: e.g. straight line, 
turning circle 
• NOTE for these motions  

• time-dependent propulsion parameters: e.g. zig-zag 
manoeuver 
• NOTE for these periodic motions  

 

( , )u F u 

0u 

0u 

MANOEUVERING EQUATIONS - SOLUTIONS 
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Alternative: Numerical Continuation Method 

 

NCM = a robust and fast method to 

• find parameter-dependent set of ‘equilibria’ of ODEs 

 (equilibrium = steady / stationary state solution) 

 

• determine stability properties of equilibria 

 

• find bifurcations and e.g. trace periodic solutions 

 (bifurcation = transition from stable to unstable) 

 

 

 

MANOEUVERING EQS - NUMERICAL CONTINUATION 
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NCM is based on Implicit Function Theorem, stating that 

« relations can be transformed into functions » 

 

 

 

 

( , ) 0 ( , )u F u F u   
u: n-vector (state variables, n=3, 4) 

λ: continuation parameters (select 1) 

MANOEUVERING EQS - NUMERICAL CONTINUATION 
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 

  u s  u 



Newton 
iteration 

 s

s

pseudo arc-length 
continuation (AUTO) 

natural parameter 
continuation 

Newton 
iteration 

MANOEUVERING EQUATIONS - NCM WITH AUTO 



29 influence of the thruster angle 

TDS initial condition 

u=20kn 

TDS initial condition 

u=40kn 

MANOEUVERING EQUATIONS - TURNING CIRCLE 



30 circular motion with noise (stable) 

time domain simulation 

3 ppD L

α=15deg 

MANOEUVERING EQUATIONS - TURNING CIRCLE 



31 straight line motion with noise (unstable) 

MANOEUVERING EQUATIONS - STRAIGHT LINE 
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add yaw as state variable 

 

 

add extra ODE:  

 

 

add yaw restoring control: 

 

 

(α is a parameter,  

not a state variable!) 
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Hopf bifurcation 

MANOEUVERING EQUATIONS - YAW CONTROL 



33 ship velocities for several periodic solutions 

direction of 
increasing course stability 

MANOEUVERING EQUATIONS - YAW CONTROL 



34 with AUTO it is easy to trace out the stability boundary … 

UNSTABLE 

STABLE 

MANOEUVERING EQUATIONS - YAW CONTROL 
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Time to reach
second execute

Period

Rudder angle  

Heading angle  

Heading check angle

Initial course

Rate of change

of heading

Overshoot time

Overshoot
angle

Time

Start of test End of test

rmax

Reach

MANOEUVERING EQUATIONS - ZIGZAG 

consider half zigzag only and 
use anti-symmetric boundary conditions 



PARAMETRIC ROLLING 



What happens if a container ship experiences large roll angles ? 

PARAMETRIC ROLLING 



simulation over large time intervals 

38 38 

 )()( tGMGMgVtC   

waves 

wave force 
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transfer coefficients for amplitude change and phase shift  
of waves acting upon metacentric height:   Aj = A(ωj)   βj = β(ωj) 
 

PARAMETRIC ROLLING - SIMPLE ODE MODEL 



)()( tGMgVCtC   
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PARAMETRIC ROLLING - EXIT TIME STRATEGY 

exit time strategy: 
 

• very long time domain simulation 
 
 
 

• observe energy 
 
 

• define critical amplitude and critical energy 



PROBABILITY OF ACHING ECRIT WITHIN TIME T 

 

Fraction of runs arriving within time T at Ecrit:   𝑞 𝑇 = 𝑚𝑖𝑛  
𝑇

𝑇𝑖𝑛𝑡
, 1  

Weighted average over all safe zones:   𝑞  𝑇  

PARAMETRIC ROLLING - EXIT TIME STRATEGY 
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stationary solution with resonant 
forcing and amplitude  φmax 

PARAMETRIC ROLLING - PROBABILITY 



SHORT CRESTED WAVES 

long crested waves 

are ‘easy’: 

• to analyse 

• to simulate 

 

 

however: 

real waves are 

short crested 

 



SHORT CRESTED WAVES 

find wave spreading functions that match 
theoretical and measured wave height distributions 



SHORT CRESTED WAVES 

find wave spreading functions that match 
theoretical and measured wave height distributions 



wave calibration using Maximum Likelihood Method 

→ find wave spreading functions that match measured cross 
spectra with theoretical wave height transfer function 

 

SHORT CRESTED WAVES 



NUMERICAL DAMPING AND DISPERSION 
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Consider plane surface waves on 2D uniform flow. Linearise in these waves.  
They are represented by Fourier components: 

Substitute this in the linearised and discretised RANS equations: 

 = RANS-operator,  ˆ
hL = discrete Fourier symbol of this operator 

Non-trivial solution only exists if determinant of        vanishes.  ˆ
hL

NUMERICAL DAMPING AND DISPERSION 

hL



• Continuous problem: wave number                                        

 

• Discretised problem: wave number             , dependent on all difference 
schemes used. 

 

• Damping and dispersion determined by 

 

• Dispersion determined by real part 

• Damping determined by imaginary part 

     

 

 

 

2

0 1/k Fn

0/k k

NUMERICAL DAMPING AND DISPERSION 

k



• Standard: 
 2nd-order dispersion, 
 3rd-order damping 

 
• It is possible to design a dp/dx  
     scheme for the FSBC that  
     cancels leading-order error  
     terms from other difference  
     schemes: ‘Balanced scheme’: 
     3rd-order dispersion,  
     5th-order damping 
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NUMERICAL DAMPING AND DISPERSION 



    
 
 

Dyne tanker, Fn=0.165, Cb=0.87 
model scale: 553x121x45 = 3.0M cells, full scale: 553x161x45 = 4.0M cells 

NUMERICAL DAMPING AND DISPERSION 
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NUMERICAL DAMPING AND DISPERSION 



ANTI-ROLL TANKS 
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empty tank filled tank 
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ANTI-ROLL TANKS – CFD U-TANK INTERNAL FLOW 
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ANTI-ROLL TANKS – VALIDATION OF CFD 
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ANTI-ROLL TANKS - COMPLEX OR SIMPLE APPROACH ? 

complex  
geometries: 
use CFD or 
experiments 

simple 
geometries: 
use 
analytical- 
empirical 
models 



 
 
• rectangular basin (44.8m x36m), 

adjustable depth up to 10 m 
• individually controlled wave flaps on 

2 sides (112/90) 
• beaches on opposite sides 
• wind and current 

 
• due to the finite dimension of the 

basin, long crested waves are not 
entirely long crested 

• reflections due to presence of test 
models (ships/offshore platforms) 
may affect test results 

 
 

REDUCTION OF OFFSHORE BASIN EFFECTS 



linearized potential flow model 

REDUCTION OF OFFSHORE BASIN EFFECTS 
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numerical solution: 
boundary element (panel) 
method with zero speed 
Green functions G(P,Q) 

ˆF(t)=Fe i t

frequency domain 



discretization: constant source per panel 
 

REDUCTION OF OFFSHORE BASIN EFFECTS 
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use ship motion program to calculate basin waves (why not?) 
waves generated by flaps 
each flap is modeled as a separate moving body 
 
 
      linear superposition of waves 
 
 
 
 
 
      beaches are modeled as  

     open boundaries (no   
     reflections) 

REDUCTION OF OFFSHORE BASIN EFFECTS 
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waves generated by all flaps on south side moving identically 
 
→ this is not long-crested !!! 

REDUCTION OF OFFSHORE BASIN EFFECTS 

• Test 
• section 



linear amplitude fade-out of outer 7 flaps 
(default solution in basin wave control software) 
 
 
 
 
 
 
 
 
 
 
 
→ already much better !!! 

REDUCTION OF OFFSHORE BASIN EFFECTS 

• Test 
• section 



Can we do better than linear fade-out? Use optimization techniques! 
 
Minimize the objective function 
 
  real part total wave elevation on optimization line 
 
  imaginary part total wave elevation on optimization line 
 
        complex amplitudes of M flap motions 
 
 
 
   

REDUCTION OF OFFSHORE BASIN EFFECTS 
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REDUCTION OF OFFSHORE BASIN EFFECTS 

45 degrees waves 
 



CONCLUSIONS 

• applied mathematics is essential for research on ship 
hydromechanics 

• successful application of mathematics requires knowledge of 
mathematical solution techniques and understanding of 
physical / technical problems 

• we need mathematicians that can think/talk/do (ship) 
hydromechanics and naval architects* that can think/talk/do 
(applied) mathematics, both at a sufficient level to ‘reach out 
and touch’ 

• we need ability and courage to model: 

• reduce & assume 

• extrapolate & validate 

• think ‘out of the box’ 
* and people from other disciplines, of course 

 



THANK YOU FOR YOUR ATTENTION ! 
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