## UNIVERSITY OF TWENTE.



Bounding Performance of Random Walks in the Positive Orthant

Jasper Goseling<br>Stochastic Operations Research, University of Twente

December 8, 2015

## Jasper Goseling

- Phd from TU Delft, electrical engineering, 2010
- information theory for wireless communication networks
- in part at Ecole Polytechnique Fédérale de Lausanne, Switzerland
- Assistent professor at University of Twente since October 2014
- stochastic operations research


## Jasper Goseling

- Phd from TU Delft, electrical engineering, 2010
- information theory for wireless communication networks
- in part at Ecole Polytechnique Fédérale de Lausanne, Switzerland
- Assistent professor at University of Twente since October 2014
- stochastic operations research

This talk is based on joint work with Xinwei Bai, Richard Boucherie, Yanting Chen, Tom Coenen and Jan-Kees van Ommeren.

$\xrightarrow{\lambda_{2}} \square \square \square \xrightarrow{\mu_{2}}$



Model: random walk in the positive orthant

- Discrete-time Markov chain on state space: $S=\{0,1, \ldots\}^{D}$
- Partition of $S$ into components $C_{1}, C_{2}, \ldots, C_{K}$ of the form

$$
C_{k}=\prod_{d=1}^{D}\left\{b_{\ell}(k, d), \ldots, b_{u}(k, d)\right\}
$$

## Model: random walk in the positive orthant

- Discrete-time Markov chain on state space: $S=\{0,1, \ldots\}^{D}$
- Partition of $S$ into components $C_{1}, C_{2}, \ldots, C_{K}$ of the form

$$
C_{k}=\prod_{d=1}^{D}\left\{b_{\ell}(k, d), \ldots, b_{u}(k, d)\right\} .
$$

- $p_{u}(n)$ : Probability to jump from $n$ to $n+u$
- Translation invariant transition probabilities in each component, i.e.,

$$
\text { if } n, m \in C_{k} \text {, then } p_{u}(n)=p_{u}(m) \text {. }
$$

- Transitions to neighbours only

$$
p_{u}(n)>0, \text { only if } u \in N=\{-1,0,1\}^{D} .
$$

## Problem Statement

- Irreducible, aperiodic and positive recurrent Markov chain
- Stationary probability distribution, $\pi: S \rightarrow[0, \infty)$, is unique solution to balance equations $\pi(n)=\sum_{m} \pi(m) p_{n-m}(m)$.
- Performance measure
- $\mathcal{F}=\mathbb{E}_{\pi}[F]$, where $F: S \rightarrow[0, \infty)$.
- Component-wise linear.
- Examples: First moments, tail probabilities, blocking probabilities, ...


## Problem Statement

- Irreducible, aperiodic and positive recurrent Markov chain
- Stationary probability distribution, $\pi: S \rightarrow[0, \infty)$, is unique solution to balance equations $\pi(n)=\sum_{m} \pi(m) p_{n-m}(m)$.
- Performance measure
- $\mathcal{F}=\mathbb{E}_{\pi}[F]$, where $F: S \rightarrow[0, \infty)$.
- Component-wise linear.
- Examples: First moments, tail probabilities, blocking probabilities, ...


## Goal

Bound $\mathcal{F}$.

## Stationary Distribution of Random Walks

- Boundary value problem for quarter plane / two dimensions:
- Find generating function of invariant measure
- Cohen \& Boxma, 1983
- Fayolle, lasnogorodski \& Malyshev, 1999
- Depends on solution of conformal mapping
- No generalization to more than two dimensions
- Matrix geometric approach:
- Neuts, 1981
- Latouche \& Ramaswami, 1999
- Depends on solution of non-linear matrix equation
- No generalizations to more than two dimensions that preserve structure
- More than four dimensions:
- Gamarnik, 2002: Positive recurrence is algorithmically undecidable


## Geometric Product-form Random Walks

- In special cases we have

$$
\pi(n)=\pi\left(n_{1}, \ldots, n_{D}\right)=\prod_{d=1}^{D}\left(1-\rho_{d}\right) \rho^{n_{d}}
$$

$$
\rho_{d} \in(0,1) .
$$

- Examples:
- Jackson queueing networks (routing between independent servers)
- Networks with negative customers
- Characterization of product-form queueing networks
- van Dijk "Queueing Networks and Product Forms: a system's approach", 1993
- Latouche \& Miyazawa, QUESTA, 2014


## Approach to Bounding $\mathcal{F}$

- Construct a second/perturbed random walk with:
- transition probabilities $\bar{p}_{u}(n)$.
- known stationary distribution $\bar{\pi}$.
- Question: Can we approximate $\mathcal{F}$ in terms of $\bar{\pi}$ ?

$$
\bar{p}_{u}(n) \approx p_{u}(n) \stackrel{? ?}{\rightleftarrows} \mathcal{F} \approx \sum_{n} \bar{\pi}(n) F(n)
$$



## Markov Reward Error Bound

- Interpret $F$ as one-step reward function.
- Expected cumulative reward starting from state $n$ :

$$
F^{t}(n)=F(n)+\sum_{u} p_{u}(n) F^{t-1}(n+u),
$$

for $t>0$ and $F^{0}(n)=0$.

- Bias term:

$$
D_{u}^{t}(n)=F^{t}(n+u)-F^{t}(n) .
$$

## Markov Reward Error Bound

$$
\begin{gathered}
F^{t}(n)=F(n)+\sum_{u} p_{u}(n) F^{t-1}(n+u) \\
D_{u}^{t}(n)=F^{t}(n+u)-F^{t}(n)
\end{gathered}
$$

## Theorem (van Dijk)

Let $\bar{F}: S \rightarrow[0, \infty)$ and $G: S \rightarrow[0, \infty)$ satisfy

$$
\left|\bar{F}(n)-F(n)+\sum_{u}\left[\bar{p}_{u}(n)-p_{u}(n)\right] D_{u}^{t}(n)\right| \leq G(n)
$$

for all $n \in S$ and $t \geq 0$. Then

$$
\left|\sum_{n} \bar{\pi}(n) \bar{F}(n)-\mathcal{F}\right| \leq \sum_{n} \bar{\pi}(n) G(n) .
$$

## A Recurrence Relation for the Bias Terms

- We will find variables $c(n, u, v, w)$ for which

$$
\begin{equation*}
D_{u}^{t+1}(n)=F(n+u)-F(n)+\sum_{v, w} c(n, u, v, w) D_{v}^{t}(n+w) . \tag{}
\end{equation*}
$$

## A Recurrence Relation for the Bias Terms

- We will find variables $c(n, u, v, w)$ for which

$$
\begin{equation*}
D_{u}^{t+1}(n)=F(n+u)-F(n)+\sum_{v, w} c(n, u, v, w) D_{v}^{t}(n+w) . \tag{}
\end{equation*}
$$

- Purpose of $c(n, u, v, w)$ :

Lemma
If $A_{u}: S \rightarrow[0, \infty)$ and $B_{u}: S \rightarrow[0, \infty), u \in N$ satisfy

$$
\begin{aligned}
& F(n+u)-F(n)+\sum_{v, w} \max \left\{-c(\cdot) A_{v}(n+w), c(\cdot) B_{v}(n+w)\right\} \leq B_{u}(n), \\
& F(n)-F(n+u)+\sum_{v, w} \max \left\{-c(\cdot) B_{v}(n+w), c(\cdot) A_{v}(n+w)\right\} \leq A_{u}(n),
\end{aligned}
$$

for all $n \in S$ and $\left({ }^{*}\right)$ is satisfied, then

$$
-A_{u}(n) \leq D_{u}^{t}(n) \leq B_{u}(n),
$$

for all $u \in N, n \in S$ and $t \geq 0$.

## A Recurrence Relation for the Bias Terms (cont'd)

## Lemma

We can formulate a set of linear constraints on $c(n, u, v, w)$ that ensure

$$
D_{u}^{t+1}(n)=F(n+u)-F(n)+\sum_{v, w} c(n, u, v, w) D_{v}^{t}(n+w) .
$$

- Linear constraints in form of a flow problem
- $D_{w}^{t}(n)=F^{t}(n+w)-F^{t}(n)$
- $D_{u}^{t+1}(n)=F(n+u)-F(n)+\sum_{v, w} c(n, u, v, w)\left[F^{t}(n+w+v)-F^{t}(n+w)\right]$
- $F^{t+1}(n)=F(n)+\sum_{u} p_{u}(n) F^{t}(n+u)$
- $D_{u}^{t+1}(n)=F(n+u)-F(n)+\sum_{v} p_{u}(n) F^{t}(n+u+v)-\sum_{w} p_{w}(n) F^{t}(n+w)$


## Markov Reward Error Bound

$$
\begin{gathered}
F^{t}(n)=F(n)+\sum_{u} p_{u}(n) F^{t-1}(n+u) \\
D_{u}^{t}(n)=F^{t}(n+u)-F^{t}(n)
\end{gathered}
$$

## Theorem (van Dijk)

Let $\bar{F}: S \rightarrow[0, \infty)$ and $G: S \rightarrow[0, \infty)$ satisfy

$$
\left|\bar{F}(n)-F(n)+\sum_{u}\left[\bar{p}_{u}(n)-p_{u}(n)\right] D_{u}^{t}(n)\right| \leq G(n)
$$

for all $n \in S$ and $t \geq 0$. Then

$$
\left|\sum_{n} \bar{\pi}(n) \bar{F}(n)-\mathcal{F}\right| \leq \sum_{n} \bar{\pi}(n) G(n) .
$$

Let $q_{u}(n)=\bar{p}_{u}(n)-p_{u}(n)$.

## A Finite Bilinear Program

- Upper bound $\mathcal{F}$ by

$$
\min \sum_{n \in S}[\bar{F}(n)+G(n)] \bar{\pi}(n)
$$

subject to $\bar{F}(n)-F(n)+\sum_{u} \max \left\{q_{u}(n) B_{u}(n),-q_{u}(n) A_{u}(n)\right\} \leq G(n)$,

$$
\begin{aligned}
& F(n)-\bar{F}(n)+\sum_{u} \max \left\{q_{u}(n) A_{u}(n),-q_{u}(n) B_{u}(n)\right\} \leq G(n), \\
& F(n+u)-F(n)+\sum_{v, w} \max \left\{-c(\cdot) A_{v}(n+w), c(\cdot) B_{v}(n+w)\right\} \leq B_{u}(n), \\
& F(n)-F(n+u)+\sum_{v, w} \max \left\{-c(\cdot) B_{v}(n+w), c(\cdot) A_{v}(n+w)\right\} \leq A_{u}(n),
\end{aligned}
$$

Constraints $\left(^{*}\right)$, linear in $c(\cdot)$,

$$
A_{u}(n) \geq 0, B_{u}(n) \geq 0, \bar{F}(n) \geq 0, G(n) \geq 0, \quad \text { for } n \in S, u \in N
$$

## A Finite Bilinear Program

- Upper bound $\mathcal{F}$ by

$$
\min \sum_{n \in S}[\bar{F}(n)+G(n)] \bar{\pi}(n)
$$

subject to $\bar{F}(n)-F(n)+\sum_{u} \max \left\{q_{u}(n) B_{u}(n),-q_{u}(n) A_{u}(n)\right\} \leq G(n)$,

$$
\begin{aligned}
& F(n)-\bar{F}(n)+\sum_{u} \max \left\{q_{u}(n) A_{u}(n),-q_{u}(n) B_{u}(n)\right\} \leq G(n), \\
& F(n+u)-F(n)+\sum_{v, w} \max \left\{-c(\cdot) A_{v}(n+w), c(\cdot) B_{v}(n+w)\right\} \leq B_{u}(n), \\
& F(n)-F(n+u)+\sum_{v, w} \max \left\{-c(\cdot) B_{v}(n+w), c(\cdot) A_{v}(n+w)\right\} \leq A_{u}(n),
\end{aligned}
$$

Constraints $\left(^{*}\right)$, linear in $c(\cdot)$,

$$
A_{u}(n) \geq 0, B_{u}(n) \geq 0, \bar{F}(n) \geq 0, G(n) \geq 0, \quad \text { for } n \in S, u \in N
$$

- Reduces to a finite number of constraints and variables if $\bar{F}, A_{u}, B_{u}$, $G$ and $c$ are constrained to be component-wise linear.


## Software Implementation

## Aim

General purpose software implementation in which transition probabilities and reward function are only input parameters.

## Software Implementation

## Aim

General purpose software implementation in which transition probabilities and reward function are only input parameters.

- Pyomo: a Python-based optimization modelling framework.
- Current implementation:
- Additional input: perturbed random walk and its stationary distribution $\bar{\pi}$.
- Find a feasible (not necessarily optimal) solution by first solving for (any) $c(n, u, v, w)$ and then the remaining linear program.


## Example 1: Coupled Queue with a Finite Buffer



## Example 1: Perturbed Random Walk



## Example 1: Result

$F_{1}=n_{1}$ : average number of customers in the first queue



## Geometric product form random walks

- Geometric product form measure: $m(i, j)=\rho^{i} \sigma^{j},(\rho, \sigma) \in(0,1)^{2}$.


## Geometric product form random walks

- Geometric product form measure: $m(i, j)=\rho^{i} \sigma^{j},(\rho, \sigma) \in(0,1)^{2}$.
- Balance equation in interior: $m(i, j)=\sum_{s=-1}^{1} \sum_{t=-1}^{1} m(i-s, j-t) p_{s, t}$.
- Balance equations

$$
\rho \sigma\left(1-\sum_{s=-1}^{1} \sum_{t=-1}^{1} \rho^{-s} \sigma^{-t} p_{s, t}\right)=0
$$

## Geometric product form random walks

- Geometric product form measure: $m(i, j)=\rho^{i} \sigma^{j},(\rho, \sigma) \in(0,1)^{2}$.
- Balance equation in interior: $m(i, j)=\sum_{s=-1}^{1} \sum_{t=-1}^{1} m(i-s, j-t) p_{s, t}$.
- Balance equations induce algebraic curves $Q$

$$
Q=\left\{(\rho, \sigma) \mid \rho \sigma\left(1-\sum_{s=-1}^{1} \sum_{t=-1}^{1} \rho^{-s} \sigma^{-t} p_{s, t}\right)=0\right\},
$$

## Geometric product form random walks

- Geometric product form measure: $m(i, j)=\rho^{i} \sigma^{j},(\rho, \sigma) \in(0,1)^{2}$.
- Balance equation in interior: $m(i, j)=\sum_{s=-1}^{1} \sum_{t=-1}^{1} m(i-s, j-t) p_{s, t}$.
- Balance equations induce algebraic curves $Q, H$ and $V$,

$$
\begin{gathered}
Q=\left\{(\rho, \sigma) \mid \rho \sigma\left(1-\sum_{s=-1}^{1} \sum_{t=-1}^{1} \rho^{-s} \sigma^{-t} p_{s, t}\right)=0\right\}, \\
H=\left\{(\rho, \sigma) \mid \rho\left(1-\sum_{s=-1}^{1} \rho^{-s} \sigma p_{s,-1}-\sum_{s=-1}^{1} \rho^{-s} h_{s}\right)=0\right\}, \\
V=\left\{(\rho, \sigma) \mid \sigma\left(1-\sum_{t=-1}^{1} \rho \sigma^{-t} p_{-1, t}-\sum_{t=-1}^{1} \sigma^{-t} v_{t}\right)=0\right\} .
\end{gathered}
$$

## Geometric product form random walks

- Geometric product form measure: $m(i, j)=\rho^{i} \sigma^{j},(\rho, \sigma) \in(0,1)^{2}$.
- Balance equation in interior: $m(i, j)=\sum_{s=-1}^{1} \sum_{t=-1}^{1} m(i-s, j-t) p_{s, t}$.
- Balance equations induce algebraic curves $Q, H$ and $V$,

$$
\begin{gathered}
Q=\left\{(\rho, \sigma) \mid \rho \sigma\left(1-\sum_{s=-1}^{1} \sum_{t=-1}^{1} \rho^{-s} \sigma^{-t} p_{s, t}\right)=0\right\}, \\
H=\left\{(\rho, \sigma) \mid \rho\left(1-\sum_{s=-1}^{1} \rho^{-s} \sigma p_{s,-1}-\sum_{s=-1}^{1} \rho^{-s} h_{s}\right)=0\right\}, \\
V=\left\{(\rho, \sigma) \mid \sigma\left(1-\sum_{t=-1}^{1} \rho \sigma^{-t} p_{-1, t}-\sum_{t=-1}^{1} \sigma^{-t} v_{t}\right)=0\right\} .
\end{gathered}
$$

- $m(i, j)=\rho^{i} \sigma^{j}$ is invariant measure iff $(\rho, \sigma) \in Q \cap H \cap V$.


## Product-form random walks (cont'd)

- $m(i, j)=\rho^{i} \sigma^{j}$ is invariant measure iff $(\rho, \sigma) \in Q \cap H \cap V$.
- Example of a product-form random walk:


- Example continued: Not a product form for other boundary transition rates


- Characterization of product-form queueing networks
- van Dijk "Queueing Networks and Product Forms: a system's approach", 1993
- Latouche \& Miyazawa, QUESTA, 2014


## Extending the class of 'tractable' random walks

- Very limited number of random walks have a product-form invariant measure
- Goal: extend class of 'tractable' performance measures

Consider $m(i, j)=\sum_{(\rho, \sigma) \in \Gamma} \alpha(\rho, \sigma) \rho^{i} \sigma^{j}$

- Sum of geometric terms induced by 「
- Assumptions:
- $|\Gamma|<\infty$,
- $\Gamma \subset(0,1)^{2}$,


## Compensation approach

- Countably many terms with pairwise-coupled structure



## Problem statement

- Sum of geometric terms: $m(i, j)=\sum_{(\rho, \sigma) \in \Gamma} \alpha(\rho, \sigma) \rho^{i} \sigma^{j}$
- When does a random walk have an invariant measure that can be expressed as a sum of geometric terms?
- Which elements $(\rho, \sigma)$ can occur in 「?
- Does $\Gamma$ need to have a specific structure?
- What are the values of $\alpha(\rho, \sigma)$ ?
- Can we construct a random walk that has a prespecified invariant measure that is a sum of geometric terms?


## Example 2




Example 3



## Example 3 (cont'd)



## Future Work

- Improve solution method for bilinear program
- Extend class of perturbed random walks
- Make software available


## Future Work

- Improve solution method for bilinear program
- Extend class of perturbed random walks
- Make software available
- Develop theory:
- Existence of bounds
- Sequences of perturbations/approximations that are asymptotically tight
- Analytical bounds


## Future Work

- Improve solution method for bilinear program
- Extend class of perturbed random walks
- Make software available
- Develop theory:
- Existence of bounds
- Sequences of perturbations/approximations that are asymptotically tight
- Analytical bounds

Thank you for your attention.

