UNIVERSITY OF TWENTE.

Bounding Performance of Random Walks in the Positive Orthant

- ▶ Phd from TU Delft, electrical engineering, 2010
 - information theory for wireless communication networks
 - ► in part at Ecole Polytechnique Fédérale de Lausanne, Switzerland
- ► Assistent professor at University of Twente since October 2014
 - stochastic operations research

- ▶ Phd from TU Delft, electrical engineering, 2010
 - information theory for wireless communication networks
 - ► in part at Ecole Polytechnique Fédérale de Lausanne, Switzerland
- ► Assistent professor at University of Twente since October 2014
 - stochastic operations research

This talk is based on joint work with Xinwei Bai, Richard Boucherie, Yanting Chen, Tom Coenen and Jan-Kees van Ommeren.

Model: random walk in the positive orthant

- Discrete-time Markov chain on state space: $S = \{0, 1, ...\}^D$
- ▶ Partition of *S* into components $C_1, C_2, ..., C_K$ of the form

$$C_k = \prod_{d=1}^D \{b_\ell(k,d),\ldots,b_u(k,d)\}.$$

Model: random walk in the positive orthant

- ▶ Discrete-time Markov chain on state space: $S = \{0, 1, ... \}^D$
- ▶ Partition of *S* into components $C_1, C_2, ..., C_K$ of the form

$$C_k = \prod_{d=1}^D \{b_\ell(k,d),\ldots,b_u(k,d)\}.$$

- $p_u(n)$: Probability to jump from n to n + u
- ► Translation invariant transition probabilities in each component, i.e.,

if
$$n, m \in C_k$$
, then $p_u(n) = p_u(m)$.

Transitions to neighbours only

$$p_u(n) > 0$$
, only if $u \in N = \{-1, 0, 1\}^D$.

- ► Irreducible, aperiodic and positive recurrent Markov chain
- Stationary probability distribution, π : S → [0,∞), is unique solution to balance equations π(n) = ∑_mπ(m)p_{n-m}(m).
- Performance measure
 - $\mathcal{F} = \mathbb{E}_{\pi}[F]$, where $F : S \to [0, \infty)$.
 - Component-wise linear.
 - ► Examples: First moments, tail probabilities, blocking probabilities, ...

- ► Irreducible, aperiodic and positive recurrent Markov chain
- Stationary probability distribution, π : S → [0,∞), is unique solution to balance equations π(n) = ∑_m π(m)p_{n-m}(m).
- Performance measure
 - $\mathcal{F} = \mathbb{E}_{\pi}[F]$, where $F : S \to [0, \infty)$.
 - Component-wise linear.
 - ► Examples: First moments, tail probabilities, blocking probabilities, ...

Goal

Bound \mathcal{F} .

Stationary Distribution of Random Walks

- ► Boundary value problem for quarter plane / two dimensions:
 - Find generating function of invariant measure
 - ► Cohen & Boxma, 1983
 - ► Fayolle, lasnogorodski & Malyshev, 1999
 - Depends on solution of conformal mapping
 - No generalization to more than two dimensions
- Matrix geometric approach:
 - ▶ Neuts, 1981
 - ► Latouche & Ramaswami, 1999
 - Depends on solution of non-linear matrix equation
 - ► No generalizations to more than two dimensions that preserve structure
- More than four dimensions:
 - ► Gamarnik, 2002: Positive recurrence is algorithmically undecidable

Geometric Product-form Random Walks

In special cases we have

$$\pi(n)=\pi(n_1,\ldots,n_D)=\prod_{d=1}^D(1-\rho_d)\rho^{n_d},$$

 $\rho_d \in (0, 1).$

- ► Examples:
 - Jackson queueing networks (routing between independent servers)
 - Networks with negative customers
 - ▶ ...
- Characterization of product-form queueing networks
 - van Dijk "Queueing Networks and Product Forms: a system's approach", 1993
 - ► Latouche & Miyazawa, QUESTA, 2014

- Construct a second/perturbed random walk with:
 - transition probabilities $\bar{p}_u(n)$.
 - known stationary distribution $\bar{\pi}$.
- Question: Can we approximate \mathcal{F} in terms of $\bar{\pi}$?

$$\bar{p}_u(n) \approx p_u(n) \stackrel{??}{\iff} \mathcal{F} \approx \sum_n \bar{\pi}(n) F(n)$$

A Bilinear Programming Approach to Error Bounds

- ▶ Interpret *F* as one-step reward function.
- Expected cumulative reward starting from state *n*:

$$F^{t}(n)=F(n)+\sum_{u}p_{u}(n)F^{t-1}(n+u),$$

for
$$t > 0$$
 and $F^0(n) = 0$.

► Bias term:

$$D_u^t(n) = F^t(n+u) - F^t(n).$$

$$F^{t}(n) = F(n) + \sum_{u} p_{u}(n)F^{t-1}(n+u),$$

 $D^{t}_{u}(n) = F^{t}(n+u) - F^{t}(n).$

Theorem (van Dijk)
Let
$$\overline{F} : S \to [0, \infty)$$
 and $G : S \to [0, \infty)$ satisfy
 $\left| \overline{F}(n) - F(n) + \sum_{u} [\overline{p}_{u}(n) - p_{u}(n)] D_{u}^{t}(n) \right| \leq G(n)$

for all $n \in S$ and $t \ge 0$. Then

$$\left|\sum_{n} \bar{\pi}(n) \bar{F}(n) - \mathcal{F}\right| \leq \sum_{n} \bar{\pi}(n) G(n).$$

A Recurrence Relation for the Bias Terms

• We will find variables c(n, u, v, w) for which

$$D_{u}^{t+1}(n) = F(n+u) - F(n) + \sum_{v,w} c(n,u,v,w) D_{v}^{t}(n+w).$$
(*)

A Recurrence Relation for the Bias Terms

• We will find variables c(n, u, v, w) for which

$$D_u^{t+1}(n) = F(n+u) - F(n) + \sum_{v,w} c(n,u,v,w) D_v^t(n+w).$$
(*)

▶ Purpose of c(n, u, v, w):

Lemma

If
$$A_u: S \to [0,\infty)$$
 and $B_u: S \to [0,\infty)$, $u \in N$ satisfy

$$F(n+u) - F(n) + \sum_{v,w} \max\{-c(\cdot)A_v(n+w), c(\cdot)B_v(n+w)\} \le B_u(n),$$

$$F(n) - F(n+u) + \sum_{v,w} \max\{-c(\cdot)B_v(n+w), c(\cdot)A_v(n+w)\} \le A_u(n),$$

for all $n \in S$ and (*) is satisfied, then

$$-A_u(n) \leq D_u^t(n) \leq B_u(n),$$

for all $u \in N$, $n \in S$ and $t \ge 0$.

Lemma

We can formulate a set of linear constraints on c(n, u, v, w) that ensure

$$D_u^{t+1}(n) = F(n+u) - F(n) + \sum_{v,w} c(n, u, v, w) D_v^t(n+w).$$

Linear constraints in form of a flow problem

$$\blacktriangleright D^t_w(n) = F^t(n+w) - F^t(n)$$

►
$$D_u^{t+1}(n) = F(n+u) - F(n) + \sum_{v,w} c(n,u,v,w) \left[F^t(n+w+v) - F^t(n+w)\right]$$

•
$$F^{t+1}(n) = F(n) + \sum_{u} p_u(n)F^t(n+u)$$

►
$$D_u^{t+1}(n) = F(n+u) - F(n) + \sum_v p_u(n)F^t(n+u+v) - \sum_w p_w(n)F^t(n+w)$$

$$F^{t}(n) = F(n) + \sum_{u} p_{u}(n)F^{t-1}(n+u),$$

$$D^{t}_{u}(n) = F^{t}(n+u) - F^{t}(n).$$

Theorem (van Dijk) Let $\overline{F} : S \to [0, \infty)$ and $G : S \to [0, \infty)$ satisfy $\left| \overline{F}(n) - F(n) + \sum_{u} [\overline{p}_{u}(n) - p_{u}(n)] D_{u}^{t}(n) \right| \leq G(n)$

for all $n \in S$ and $t \ge 0$. Then

$$\left|\sum_{n} \bar{\pi}(n) \bar{F}(n) - \mathcal{F}\right| \leq \sum_{n} \bar{\pi}(n) G(n).$$

Let
$$q_u(n) = \bar{p}_u(n) - p_u(n)$$
.

 \blacktriangleright Upper bound ${\mathcal F}$ by

$$\begin{split} \min \ \sum_{n \in S} \left[\bar{F}(n) + G(n) \right] \bar{\pi}(n), \\ \text{subject to } \bar{F}(n) - F(n) + \sum_{u} \max \left\{ q_{u}(n) B_{u}(n), -q_{u}(n) A_{u}(n) \right\} \leq G(n), \\ F(n) - \bar{F}(n) + \sum_{u} \max \left\{ q_{u}(n) A_{u}(n), -q_{u}(n) B_{u}(n) \right\} \leq G(n), \\ F(n+u) - F(n) + \sum_{v,w} \max\{ -c(\cdot) A_{v}(n+w), c(\cdot) B_{v}(n+w) \} \leq B_{u}(n), \\ F(n) - F(n+u) + \sum_{v,w} \max\{ -c(\cdot) B_{v}(n+w), c(\cdot) A_{v}(n+w) \} \leq A_{u}(n), \\ \text{Constraints (*), linear in } c(\cdot), \\ A_{u}(n) \geq 0, B_{u}(n) \geq 0, \bar{F}(n) \geq 0, G(n) \geq 0, \quad \text{for } n \in S, u \in N. \end{split}$$

 \blacktriangleright Upper bound ${\mathcal F}$ by

$$\begin{split} \min \ &\sum_{n \in S} \left[\bar{F}(n) + G(n) \right] \bar{\pi}(n), \\ \text{subject to } \bar{F}(n) - F(n) + \sum_{u} \max \left\{ q_{u}(n) B_{u}(n), -q_{u}(n) A_{u}(n) \right\} \leq G(n), \\ &F(n) - \bar{F}(n) + \sum_{u} \max \left\{ q_{u}(n) A_{u}(n), -q_{u}(n) B_{u}(n) \right\} \leq G(n), \\ &F(n+u) - F(n) + \sum_{v,w} \max\{ -c(\cdot) A_{v}(n+w), c(\cdot) B_{v}(n+w) \} \leq B_{u}(n), \\ &F(n) - F(n+u) + \sum_{v,w} \max\{ -c(\cdot) B_{v}(n+w), c(\cdot) A_{v}(n+w) \} \leq A_{u}(n), \\ &\text{Constraints (*), linear in } c(\cdot), \\ &A_{u}(n) \geq 0, B_{u}(n) \geq 0, \bar{F}(n) \geq 0, G(n) \geq 0, \quad \text{for } n \in S, u \in N. \end{split}$$

Reduces to a finite number of constraints and variables if F, Au, Bu, G and c are constrained to be component-wise linear.

Aim

General purpose software implementation in which transition probabilities and reward function are only input parameters.

Aim

General purpose software implementation in which transition probabilities and reward function are only input parameters.

- ► Pyomo: a Python-based optimization modelling framework.
- Current implementation:
 - Additional input: perturbed random walk and its stationary distribution $\bar{\pi}$.
 - ► Find a feasible (not necessarily optimal) solution by first solving for (any) c(n, u, v, w) and then the remaining linear program.

Example 1: Coupled Queue with a Finite Buffer

Example 1: Perturbed Random Walk

 $\pi(n) = \alpha \left(\frac{\lambda_1}{\mu_1}\right)^{n_1} \left(\frac{\lambda_2}{\mu_2}\right)^{n_2}$, where α is the normalization constant.

 $F_1 = n_1$: average number of customers in the first queue

Perturbations for Two-dimensional Random Walks

• Geometric product form measure: $m(i,j) = \rho^i \sigma^j$, $(\rho, \sigma) \in (0,1)^2$.

- Geometric product form measure: m(i,j) = ρⁱσ^j, (ρ, σ) ∈ (0,1)².
 Balance equation in interior: m(i,j) = Σ¹_{s=-1}Σ¹_{t=-1}m(i-s,j-t)p_{s,t}.
- **Balance** equations

$$\rho\sigma\left(1-\sum_{s=-1}^{1}\sum_{t=-1}^{1}\rho^{-s}\sigma^{-t}p_{s,t}\right)=0\quad,$$

- Geometric product form measure: m(i,j) = ρⁱσ^j, (ρ, σ) ∈ (0,1)².
 Balance equation in interior: m(i,j) = Σ¹_{s=-1}Σ¹_{t=-1}m(i-s,j-t)p_{s,t}.
- ► Balance equations induce algebraic curves Q

$$Q = \left\{ (\rho, \sigma) \mid \rho\sigma \left(1 - \sum_{s=-1}^{1} \sum_{t=-1}^{1} \rho^{-s} \sigma^{-t} p_{s,t} \right) = 0 \right\},$$

- Geometric product form measure: m(i,j) = ρⁱσ^j, (ρ, σ) ∈ (0,1)².
 Balance equation in interior: m(i,j) = Σ¹_{s=-1}Σ¹_{t=-1}m(i-s,j-t)p_{s,t}.
- Balance equations induce algebraic curves Q, H and V,

$$Q = \left\{ (\rho, \sigma) \middle| \rho\sigma \left(1 - \sum_{s=-1}^{1} \sum_{t=-1}^{1} \rho^{-s} \sigma^{-t} \rho_{s,t} \right) = 0 \right\},$$

$$H = \left\{ (\rho, \sigma) \middle| \rho \left(1 - \sum_{s=-1}^{1} \rho^{-s} \sigma \rho_{s,-1} - \sum_{s=-1}^{1} \rho^{-s} h_s \right) = 0 \right\},$$

$$V = \left\{ (\rho, \sigma) \middle| \sigma \left(1 - \sum_{t=-1}^{1} \rho\sigma^{-t} \rho_{-1,t} - \sum_{t=-1}^{1} \sigma^{-t} v_t \right) = 0 \right\}.$$

- Geometric product form measure: m(i,j) = ρⁱσ^j, (ρ, σ) ∈ (0,1)².
 Balance equation in interior: m(i,j) = Σ¹_{s=-1}Σ¹_{t=-1}m(i-s,j-t)p_{s,t}.
- Balance equations induce algebraic curves Q, H and V,

$$Q = \left\{ (\rho, \sigma) \middle| \rho\sigma \left(1 - \sum_{s=-1}^{1} \sum_{t=-1}^{1} \rho^{-s} \sigma^{-t} \rho_{s,t} \right) = 0 \right\},$$

$$H = \left\{ (\rho, \sigma) \middle| \rho \left(1 - \sum_{s=-1}^{1} \rho^{-s} \sigma \rho_{s,-1} - \sum_{s=-1}^{1} \rho^{-s} h_s \right) = 0 \right\},$$

$$V = \left\{ (\rho, \sigma) \middle| \sigma \left(1 - \sum_{t=-1}^{1} \rho\sigma^{-t} \rho_{-1,t} - \sum_{t=-1}^{1} \sigma^{-t} v_t \right) = 0 \right\}.$$

• $m(i, j) = \rho^i \sigma^j$ is invariant measure iff $(\rho, \sigma) \in Q \cap H \cap V$.

Product-form random walks (cont'd)

- $m(i,j) = \rho^i \sigma^j$ is invariant measure iff $(\rho, \sigma) \in Q \cap H \cap V$.
- Example of a product-form random walk:

 Example continued: Not a product form for other boundary transition rates

Characterization of product-form queueing networks

- van Dijk "Queueing Networks and Product Forms: a system's approach", 1993
- ► Latouche & Miyazawa, QUESTA, 2014

Extending the class of 'tractable' random walks

- Very limited number of random walks have a product-form invariant measure
- ► Goal: extend class of 'tractable' performance measures

Consider $m(i,j) = \sum_{(\rho,\sigma)\in\Gamma} \alpha(\rho,\sigma) \rho^i \sigma^j$

- \blacktriangleright Sum of geometric terms induced by Γ
- Assumptions:
 - $\blacktriangleright \ |\Gamma| < \infty,$
 - Γ ⊂ (0, 1)²,

Compensation approach

► Countably many terms with pairwise-coupled structure

- ► Sum of geometric terms: $m(i,j) = \sum_{(\rho,\sigma) \in \Gamma} \alpha(\rho,\sigma) \rho^i \sigma^j$
- ► When does a random walk have an invariant measure that can be expressed as a sum of geometric terms?
 - Which elements (ρ, σ) can occur in Γ ?
 - Does Γ need to have a specific structure?
 - What are the values of $\alpha(\rho, \sigma)$?
- Can we construct a random walk that has a prespecified invariant measure that is a sum of geometric terms?

Example 2

Future Work

- Improve solution method for bilinear program
- Extend class of perturbed random walks
- Make software available

Future Work

- Improve solution method for bilinear program
- Extend class of perturbed random walks
- Make software available
- ► Develop theory:
 - Existence of bounds
 - ► Sequences of perturbations/approximations that are asymptotically tight
 - Analytical bounds

Future Work

- Improve solution method for bilinear program
- Extend class of perturbed random walks
- Make software available
- ► Develop theory:
 - Existence of bounds
 - ► Sequences of perturbations/approximations that are asymptotically tight
 - Analytical bounds

Thank you for your attention.