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Model: random walk in the positive orthant

▶ Discrete-time Markov chain on state space: S = {0, 1, . . . }D
▶ Partition of S into components C1,C2, . . . ,CK of the form

Ck =
D∏

d=1

{bℓ(k, d), . . . , bu(k, d)}.

▶ pu(n) : Probability to jump from n to n + u
▶ Translation invariant transition probabilities in each component, i.e.,

if n,m ∈ Ck , then pu(n) = pu(m).

▶ Transitions to neighbours only

pu(n) > 0, only if u ∈ N = {−1, 0, 1}D .
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Problem Statement

▶ Irreducible, aperiodic and positive recurrent Markov chain

▶ Stationary probability distribution, π : S → [0,∞), is unique solution to
balance equations π(n) =

∑
m π(m)pn−m(m).

▶ Performance measure
▶ F = Eπ[F ], where F : S → [0,∞).
▶ Component-wise linear.
▶ Examples: First moments, tail probabilities, blocking probabilities, . . .

Goal
Bound F .
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Stationary Distribution of Random Walks

▶ Boundary value problem for quarter plane / two dimensions:
▶ Find generating function of invariant measure
▶ Cohen & Boxma, 1983
▶ Fayolle, Iasnogorodski & Malyshev, 1999
▶ Depends on solution of conformal mapping
▶ No generalization to more than two dimensions

▶ Matrix geometric approach:
▶ Neuts, 1981
▶ Latouche & Ramaswami, 1999
▶ Depends on solution of non-linear matrix equation
▶ No generalizations to more than two dimensions that preserve structure

▶ More than four dimensions:
▶ Gamarnik, 2002: Positive recurrence is algorithmically undecidable
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Geometric Product-form Random Walks

▶ In special cases we have

π(n) = π(n1, . . . , nD) =
D∏

d=1

(1− ρd)ρ
nd ,

ρd ∈ (0, 1).
▶ Examples:

▶ Jackson queueing networks (routing between independent servers)
▶ Networks with negative customers
▶ . . .

▶ Characterization of product-form queueing networks
▶ van Dijk “Queueing Networks and Product Forms: a system’s approach”,

1993
▶ Latouche & Miyazawa, QUESTA, 2014
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Approach to Bounding F

▶ Construct a second/perturbed random walk with:
▶ transition probabilities p̄u(n).
▶ known stationary distribution π̄.

▶ Question: Can we approximate F in terms of π̄?

p̄u(n) ≈ pu(n)
??⇐⇒ F ≈

∑
n

π̄(n)F (n)
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A Bilinear Programming Approach to Error Bounds



Markov Reward Error Bound

▶ Interpret F as one-step reward function.

▶ Expected cumulative reward starting from state n:

F t(n) = F (n) +
∑
u

pu(n)F
t−1(n + u),

for t > 0 and F 0(n) = 0.

▶ Bias term:
Dt

u(n) = F t(n + u)− F t(n).
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Markov Reward Error Bound

F t(n) = F (n) +
∑
u

pu(n)F
t−1(n + u),

Dt
u(n) = F t(n + u)− F t(n).

Theorem (van Dijk)

Let F̄ : S → [0,∞) and G : S → [0,∞) satisfy∣∣∣∣∣F̄ (n)− F (n) +
∑
u

[p̄u(n)− pu(n)]D
t
u(n)

∣∣∣∣∣ ≤ G (n)

for all n ∈ S and t ≥ 0. Then∣∣∣∣∣∑
n

π̄(n)F̄ (n)−F

∣∣∣∣∣ ≤∑
n

π̄(n)G (n).

Let qu(n) = p̄u(n)− pu(n).
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A Recurrence Relation for the Bias Terms

▶ We will find variables c(n, u, v ,w) for which

Dt+1
u (n) = F (n + u)− F (n) +

∑
v ,w

c(n, u, v ,w)Dt
v (n + w). (*)

▶ Purpose of c(n, u, v ,w):

Lemma
If Au : S → [0,∞) and Bu : S → [0,∞), u ∈ N satisfy

F (n + u)− F (n) +
∑
v,w

max{−c(·)Av (n + w), c(·)Bv (n + w)} ≤ Bu(n),

F (n)− F (n + u) +
∑
v,w

max{−c(·)Bv (n + w), c(·)Av (n + w)} ≤ Au(n),

for all n ∈ S and (*) is satisfied, then

−Au(n) ≤ Dt
u(n) ≤ Bu(n),

for all u ∈ N, n ∈ S and t ≥ 0.
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A Recurrence Relation for the Bias Terms (cont’d)

Lemma

We can formulate a set of linear constraints on c(n, u, v ,w) that ensure

Dt+1
u (n) = F (n + u)− F (n) +

∑
v ,w

c(n, u, v ,w)Dt
v (n + w).

▶ Linear constraints in form of a flow problem

▶ Dt
w (n) = F t(n + w)− F t(n)

▶ Dt+1
u (n) = F (n + u)− F (n) +

∑
v,w c(n, u, v ,w)

[
F t(n + w + v)− F t(n + w)

]
▶ F t+1(n) = F (n) +

∑
u pu(n)F

t(n + u)

▶ Dt+1
u (n) = F (n + u)− F (n) +

∑
v pu(n)F

t(n + u + v)−
∑

w pw (n)F
t(n + w)

13/30



Markov Reward Error Bound

F t(n) = F (n) +
∑
u

pu(n)F
t−1(n + u),

Dt
u(n) = F t(n + u)− F t(n).
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Let F̄ : S → [0,∞) and G : S → [0,∞) satisfy∣∣∣∣∣F̄ (n)− F (n) +
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t
u(n)

∣∣∣∣∣ ≤ G (n)

for all n ∈ S and t ≥ 0. Then∣∣∣∣∣∑
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A Finite Bilinear Program

▶ Upper bound F by

min
∑
n∈S

[
F̄ (n) + G(n)

]
π̄(n),

subject to F̄ (n)− F (n) +
∑
u

max {qu(n)Bu(n),−qu(n)Au(n)} ≤ G(n),

F (n)− F̄ (n) +
∑
u

max {qu(n)Au(n),−qu(n)Bu(n)} ≤ G(n),

F (n + u)− F (n) +
∑
v,w

max{−c(·)Av (n + w), c(·)Bv (n + w)} ≤ Bu(n),

F (n)− F (n + u) +
∑
v,w

max{−c(·)Bv (n + w), c(·)Av (n + w)} ≤ Au(n),

Constraints (*), linear in c(·),
Au(n) ≥ 0,Bu(n) ≥ 0, F̄ (n) ≥ 0,G(n) ≥ 0, for n ∈ S , u ∈ N.

▶ Reduces to a finite number of constraints and variables if F̄ , Au, Bu,
G and c are constrained to be component-wise linear.
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Software Implementation

Aim
General purpose software implementation in which transition probabilities
and reward function are only input parameters.

▶ Pyomo: a Python-based optimization modelling framework.

▶ Current implementation:
▶ Additional input: perturbed random walk and its stationary distribution π̄.
▶ Find a feasible (not necessarily optimal) solution by first solving for (any)

c(n, u, v ,w) and then the remaining linear program.
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Example 1: Coupled Queue with a Finite Buffer
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λ1 = λ2 = 0.15, µ1 = µ2 = 0.2, µ̃1 = µ̃2 = 0.25.
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Example 1: Perturbed Random Walk
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µ1
)n1(λ2

µ2
)n2 , where α is the normalization constant.
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Example 1: Result

F1 = n1: average number of customers in the first queue
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Perturbations for Two-dimensional Random Walks



Geometric product form random walks

▶ Geometric product form measure: m(i , j) = ρiσj , (ρ, σ) ∈ (0, 1)2.

▶ Balance equation in interior: m(i , j) =
∑1

s=−1

∑1
t=−1 m(i − s, j − t)ps,t .

▶ Balance equations

induce algebraic curves Q, H and V ,

Q =

{
(ρ, σ)

∣∣∣∣∣

ρσ

(
1−

1∑
s=−1

1∑
t=−1

ρ−sσ−tps,t

)
= 0

}

,

H =

{
(ρ, σ)

∣∣∣∣∣ ρ
(
1−

1∑
s=−1

ρ−sσps,−1 −
1∑

s=−1

ρ−shs

)
= 0

}
,

V =

{
(ρ, σ)

∣∣∣∣∣ σ
(
1−

1∑
t=−1

ρσ−tp−1,t −
1∑

t=−1

σ−tvt

)
= 0

}
.

▶ m(i , j) = ρiσj is invariant measure iff (ρ, σ) ∈ Q ∩ H ∩ V .
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Product-form random walks (cont’d)

▶ m(i , j) = ρiσj is invariant measure iff (ρ, σ) ∈ Q ∩ H ∩ V .
▶ Example of a product-form random walk:
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▶ Example continued: Not a product form for other boundary transition
rates

→i

j

↑
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▶ Characterization of product-form queueing networks
▶ van Dijk “Queueing Networks and Product Forms: a system’s approach”,

1993
▶ Latouche & Miyazawa, QUESTA, 2014
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Extending the class of ‘tractable’ random walks

▶ Very limited number of random walks have a product-form invariant
measure

▶ Goal: extend class of ‘tractable’ performance measures

Consider m(i , j) =
∑

(ρ,σ)∈Γ α(ρ, σ)ρ
iσj

▶ Sum of geometric terms induced by Γ

▶ Assumptions:
▶ |Γ| < ∞,
▶ Γ ⊂ (0, 1)2,
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Compensation approach

▶ Countably many terms with pairwise-coupled structure

Previous work

0 0.5 1 1.5

0.5
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1.5

0 0.5 1 1.4

0.5
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1.4

0 0.5 1 1.4

0.5
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m(i , j) = ⇢i�j

.

|�| < 1. Chen

et al, 2012.

|�| = 1. Adan

et al, 1993.

Yanting Chen, 15-07-2013

4 / 17
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Problem statement

▶ Sum of geometric terms: m(i , j) =
∑

(ρ,σ)∈Γ α(ρ, σ)ρ
iσj

▶ When does a random walk have an invariant measure that can be
expressed as a sum of geometric terms?

▶ Which elements (ρ, σ) can occur in Γ?
▶ Does Γ need to have a specific structure?
▶ What are the values of α(ρ, σ)?

▶ Can we construct a random walk that has a prespecified invariant
measure that is a sum of geometric terms?
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Example 2

→i
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Figure 5: Example 2. (a) Transition diagram of Example 2. (b) Balance
equations. The geometric terms contributed to the invariant measure are
denoted by the blue squares.
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Figure 6: Example 3. (a) Transition diagram of Example 3. (b) Balance
equations. The geometric terms contributed to the invariant measure are
denoted by the blue squares.
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Example 3

Invariant measures and error bounds for random walks in the quarter-plane 19
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Fig. 6 Example 4. (a) Transition diagram. (b) Algebraic curves Q, H and V . The geometric
terms are denoted by the squares.

In Figure 6(a), all non-zero transition probabilities, except those for the tran-
sitions from a state to itself, are illustrated.

Using the Detection Algorithm, we conclude that the invariant measure
cannot be a sum of geometric terms. Instead, we will find error bounds for
F1. We first obtain error bounds for F1 using a perturbed random walk of
which the invariant measure is of product-form. Figure 7(a) shows 12 different
geometric terms which are the invariant measures of the perturbed random
walks used to bound F1. Moreover, we bound F1 based on a perturbed random
walk of which the invariant measure is the sum of the 3 geometric terms that
are depicted as solid squares in Figure 6(b). Finally, we find error bounds for
F1 in Figure 7(b). Figure 7(b) shows that the minimum of [F1

1 ]up and the
maximum of [F1

1 ]low, when perturbed random walks of which the invariant
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F1. We first obtain error bounds for F1 using a perturbed random walk of
which the invariant measure is of product-form. Figure 7(a) shows 12 different
geometric terms which are the invariant measures of the perturbed random
walks used to bound F1. Moreover, we bound F1 based on a perturbed random
walk of which the invariant measure is the sum of the 3 geometric terms that
are depicted as solid squares in Figure 6(b). Finally, we find error bounds for
F1 in Figure 7(b). Figure 7(b) shows that the minimum of [F1

1 ]up and the
maximum of [F1

1 ]low, when perturbed random walks of which the invariant
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Example 3 (cont’d)
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Fig. 7 (a) The geometric measures from Q. (b) Error bounds for F1. The x-axis in (b)
are the index of 12 geometric measures in (a) sorted from left up corner to the right down
corner.

measures are of product-form are used, are

min([F1
1 ]up) = 5.4200, max([F1

1 ]low) = �1.9527.

Note that lower bounds which provide negative values are not directly useful,
since F can always be lower bounded by 0. However, these bounds indicate the
range of errors that our approximation scheme may lead to. The upper and
lower bounds for F1, when the perturbed random walk of which the invariant
measure is a sum of 3 geometric terms which are depicted in Figure 6(b) is
used, are

[F3
1 ]up = 2.9026, [F3

1 ]low = 0.8964.

Clearly, [F3
1 ]up and [F3

1 ]low outperform [F1
1 ]up and [F1

1 ]low. From the results
above, we conclude that using a perturbed random walk of which the invariant
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Future Work

▶ Improve solution method for bilinear program

▶ Extend class of perturbed random walks

▶ Make software available

▶ Develop theory:
▶ Existence of bounds
▶ Sequences of perturbations/approximations that are asymptotically tight
▶ Analytical bounds

Thank you for your attention.
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