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Model: random walk in the positive orthant

» Discrete-time Markov chain on state space: S = {0,1,...}"
» Partition of S into components Cy, Gy, ..., Ck of the form

D

Ce = [ [{be(k. d)...., bu(k,d)}.

d=1
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Model: random walk in the positive orthant

Discrete-time Markov chain on state space: S = {0,1,...}P

Partition of S into components C;, G, ..., Cxk of the form
D
Ce = [ [{be(k. d)...., bu(k,d)}.
d=1
pu(n) : Probability to jump from nto n+u

Translation invariant transition probabilities in each component, i.e.,
if n,m € C,then p,(n) = py(m).
Transitions to neighbours only
pu(n) >0, only if u e N = {-1,0,1}".
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Problem Statement

» Irreducible, aperiodic and positive recurrent Markov chain

» Stationary probability distribution, 7 : S — [0, 00), is unique solution to
balance equations 7(n) = > 7(m)pr—m(m).
» Performance measure
» F =E,[F], where F: S — [0, 00).
» Component-wise linear.
» Examples: First moments, tail probabilities, blocking probabilities, ...
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Problem Statement

» Irreducible, aperiodic and positive recurrent Markov chain
» Stationary probability distribution, 7 : S — [0, 00), is unique solution to
balance equations 7(n) = > 7(m)pr—m(m).
» Performance measure
» F =E,[F], where F: S — [0, 00).
» Component-wise linear.
» Examples: First moments, tail probabilities, blocking probabilities, ...

Goal
Bound F.
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Stationary Distribution of Random Walks

» Boundary value problem for quarter plane / two dimensions:
» Find generating function of invariant measure

Cohen & Boxma, 1983

Fayolle, lasnogorodski & Malyshev, 1999

Depends on solution of conformal mapping

No generalization to more than two dimensions

vvyVvyy

» Matrix geometric approach:

Neuts, 1981

Latouche & Ramaswami, 1999

Depends on solution of non-linear matrix equation

No generalizations to more than two dimensions that preserve structure

v
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» More than four dimensions:
» Gamarnik, 2002: Positive recurrence is algorithmically undecidable
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Geometric Product-form Random Walks

» In special cases we have
m(n) =m(n,...,np) = [[(1 = pa)p™,

pd € (Oa 1)
» Examples:
» Jackson queueing networks (routing between independent servers)
» Networks with negative customers
>
» Characterization of product-form queueing networks
» van Dijk “Queueing Networks and Product Forms: a system’s approach”,
1993
» Latouche & Miyazawa, QUESTA, 2014
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Approach to Bounding F

» Construct a second/perturbed random walk with:
» transition probabilities p,(n).
» known stationary distribution 7.

» Question: Can we approximate F in terms of 77

Bu(n) ~ pu(n) <> F = > #(n)F(n)
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A Bilinear Programming Approach to Error Bounds
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Markov Reward Error Bound

> Interpret F as one-step reward function.
» Expected cumulative reward starting from state n:

Fi(n) = F(n)+ > _ pu(n)F*(n+u),

for t > 0 and F°(n) = 0.
» Bias term:
Di(n) = F*(n+ u) — F*(n).

u
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Markov Reward Error Bound

Fi(n) = F(n)+ > pu(n)F*(n+u),
Di(n) = Ft(n+ u) — F*(n).

u

Theorem (van Dijk)
Let F: S —[0,00) and G : S — [0, 00) satisfy

< G(n)

F(n) = F(n) + Y [Bu(n) — pu(n)] Di(n)

foralln €S and t > 0. Then

> #(n)F(n)—F

n

<> &(n)G(n).
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A Recurrence Relation for the Bias Terms

» We will find variables c(n, u, v, w) for which

D (n) = F(n+u)—F(n)+Zc(n, u,v,w)D!(n+ w). *)

v,w
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A Recurrence Relation for the Bias Terms

» We will find variables c(n, u, v, w) for which
D (n) = F(n—&—u)—F(n)—l—Zc(n7 u,v,w)D!(n+ w). *)
» Purpose of c(n, u, v, w):

Lemma
IfA,: S —[0,00) and B, : S — [0,00), u € N satisfy

F(n+ u) — Zmax{ Av(n+ w),c(-)B.(n+ w)} < By(n),
F(n)— F(n+ u) + Zmax{ B,(n+ w),c(:)Av(n+ w)} < Au(n),

for all n € S and (*) is satisfied, then

—Au(n) < Di(n) < Bu(n),

forallue N, ne S and t > 0.
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A Recurrence Relation for the Bias Terms (cont'd)

Lemma

We can formulate a set of linear constraints on c(n, u,v,w) that ensure

DY (n) = F(n+u) — F(n) + Z c(n, u,v,w)Di(n+ w).

v,w

» Linear constraints in form of a flow problem
> Di(n) = F(n+ w) — F(n)

> DN (n) = F(n+u) = F(n)+ 5, c(n u,v,w) [F*(n+w+v) = F'(n+ w)]

> FH(n) = F(n) + 32, pu(n)F*(n + u)

> Dyt (n) = F(n+u) = F(n) + X2, pu(n)F'(n+u+v) =3, pu(n)F'(n+w)
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Markov Reward Error Bound

+Zpu )FH(n+ u),
D, (n) = F("+U) Fi(n).

u

Theorem (van Dijk)
Let F:S —[0,00) and G : S — [0,00) satisfy

F(n) - +Z[pu = pu(m)] Dy(n)| < G(n)

forallne€ S and t > 0. Then

> @(n)F(n)

n

—F| <) @(n)G(n)

Let g,(n) = pu(n) — pu(n). 14/30



A Finite Bilinear Program

» Upper bound F by
min ZE; [F(n) + G(n)] 7(n),
subject to F(n) — F(n) + Zmax{qu )Bu(n), —qu(n)Au(n)} < G(n),
F(n) — +Zma><{qu )Au(n), —qu(n)Bu(n)} < G(n),
F(n+u)—F(n)+ ZW max{—c(-)Av(n + w), c(-)B,(n + w)} < Bu(n),
F(n) = F(n+u)+ Z; max{—c()Bv(n + w), c(-)Av(n + w)} < Au(n),

Constraints (*), linear in c(-),
A,(n) > 0,B,(n) >0,F(n)>0,G(n) >0, forncS,uch.
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A Finite Bilinear Program

» Upper bound F by

min Z [F(n) + G(n)] 7(n),

neS

subject to F(n) — Zmax{qu )Bu(n), —qu(n)Au(n)} < G(n),
F(n) — +Zmax{qu )Au(n), —qu(n)Bu(n)} < G(n),
F(n+ u) )+ Z max{—c(-)A,(n+ w), c(:)B,(n+ w)} < Bu(n),

F(n)— F(n+u)+ Z max{—c(:)Bv(n+ w), c(-)Av(n+ w)} < Au(n),

Constraints (*), linear in c(-),
A,(n) > 0,B,(n) >0,F(n)>0,G(n) >0, forncS,uch.

» Reduces to a finite number of constraints and variables if F, Ay, Ba,
G and c are constrained to be component-wise linear.
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Software Implementation

Aim
General purpose software implementation in which transition probabilities
and reward function are only input parameters.
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Software Implementation

Aim
General purpose software implementation in which transition probabilities
and reward function are only input parameters.

» Pyomo: a Python-based optimization modelling framework.
» Current implementation:

» Additional input: perturbed random walk and its stationary distribution 7.
» Find a feasible (not necessarily optimal) solution by first solving for (any)
c(n, u,v,w) and then the remaining linear program.
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Example 1: Coupled Queue with a Finite Buffer

A1 fi A1 fip Ly M
/\1 = /\2 = 0.15, M1 = M2 = 0.2, ﬂl = ﬂQ = 0.25.
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Example 1: Perturbed Random Walk

A1 H A1 Hi [ M
)\1 = )\2 = 015, H1 = M2 = 02, ﬁl = /12 = 0.25.

7(n) = a(%)”l(%)"z, where « is the normalization constant.
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Example 1: Result

F1 = ny: average number of customers in the first queue

I
[
—o— F,*

2.5

Average number of jobs in the first queue

5 10 15 20 25 30
Ly
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Perturbations for Two-dimensional Random Walks
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Geometric product form random walks

» Geometric product form measure: m(i,j) = p'o?, (p,o) € (0,1).
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Geometric product form random walks

» Geometric product form measure: m(i,j) = p'a’, (p,o) € (0,1)%.
» Balance equation in interior: m(i,j) = Zi:_l 21:_1 m(i —s,j — t)ps,¢-
» Balance equations

11
po (1 - Z Z ps(ftps_f> =0 ,

s=—1t=-1
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Geometric product form random walks

» Geometric product form measure: m(i,j) = p'a’, (p,o) € (0,1)%.
» Balance equation in interior: m(i,j) = Zi:_l 21:_1 m(i —s,j — t)ps,¢-
» Balance equations induce algebraic curves @, H and V,

11
po (1 - Z Z ps(ftps_f> = 0},

s=—1t=-1

1 1
P (1 - Z /)75(7P5ﬁ—1 - Z /)shs> = 0}7

s=—1 s=—1

1 1
o (1 — Z po tp_1t — Z ﬂtvt> = 0}.

t=—1 t=—1

Q= {(p,a)

H = {(p,a)

V= {(p,a)
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Geometric product form random walks

» Geometric product form measure: m(i,j) = p'a’, (p,o) € (0,1)%.
» Balance equation in interior: m(i,j) = Zi:_l 21:_1 m(i —s,j — t)ps,¢-
» Balance equations induce algebraic curves @, H and V,

1 1
po (1 — Z Z ps(ftps_f> = O},

s=—1t=-1

1 1
P <1 - Z /)75(7P5ﬁ—1 - Z /)shs> = 0}7

s=—1 s=—1

1 1
o <1 — Z po tp_1t — Z ﬂtvt> = 0}.

t=—1 t=—1

Q= {(p,a)

H = {(p,a)

V= {(p,a)

» m(i,j) = p'o’ is invariant measure iff (p,0) € QN HN V.
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Product-form random walks (cont’'d)

» m(i,j) = p'o’ is invariant measure iff (p,0) € QN HN V.
» Example of a product-form random walk:

1.5
I —Q
0.2 ; 0.2 —H
.25 .25 . v |
0.35 0.25 }» 0.25 .
0.15 0.5 05| |
0.25
0 |
0.25 0.35 0.25 —i 0 0.5 1 1.5

05 0.15 P

22/30



» Example continued: Not a product form for other boundary transition

rates
1.5

—Q
—H
— Vv ||

0.25 0.35 0.5 1 1.5
0.15 P

0.5

» Characterization of product-form queueing networks
» van Dijk “Queueing Networks and Product Forms: a system’s approach”,
1993
» Latouche & Miyazawa, QUESTA, 2014
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Extending the class of ‘tractable’ random walks

Very limited number of random walks have a product-form invariant
measure

Goal: extend class of ‘tractable’ performance measures

Consider m(i,j) = 32, oyer a(p, 0)p'c’!

Sum of geometric terms induced by I
Assumptions:

» || < oo,

> Fc(0,1)%
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Compensation approach

» Countably many terms with pairwise-coupled structure

05
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Problem statement

> Sum of geometric terms: m(i,j) = >_(, »yer a(p,0)p'c’
» When does a random walk have an invariant measure that can be
expressed as a sum of geometric terms?

» Which elements (p, o) can occur in ['?
» Does I' need to have a specific structure?
» What are the values of a(p,0)?

» Can we construct a random walk that has a prespecified invariant
measure that is a sum of geometric terms?

26/30



Example 2

1
pP-11 Po,1 1.4
Py 2~
n
P10 P-1,0 € y P1,0 1
v_1
4 :: A
P1,—1 Po,—1 P1,—1
pP-1,1 Po,1 0.5
AN
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Example 3

¥

0.1

0.03

0.1 0.1
Y 0.1 0.3 0.1
0.1 0.3 0.1
0.1 0.1
Y002 01 —i

1.4

14
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Example 3 (cont'd)

Average number of jobs in dimension 1

20

15¢

5

LS
T~
=

—10

—15

O,

. 5<M

Index of the geometric terms

4

12345678 9101112
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Future Work

» Improve solution method for bilinear program
» Extend class of perturbed random walks
» Make software available
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Future Work

Improve solution method for bilinear program
Extend class of perturbed random walks
Make software available

Develop theory:
» Existence of bounds
» Sequences of perturbations/approximations that are asymptotically tight
» Analytical bounds
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Future Work

Improve solution method for bilinear program
Extend class of perturbed random walks
Make software available

Develop theory:

» Existence of bounds
» Sequences of perturbations/approximations that are asymptotically tight
» Analytical bounds

Thank you for your attention.
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