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Definition

Let X be a finite set. A (rooted) phylogenetic tree on X is a rooted
tree with no indegree-1 outdegree-1 vertices whose leaves are bijectively
labelled by the elements of X .
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(New Guinea + Australia)
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W.F. Doolittle et al. (2000)
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Definition

Let X be a finite set. A (rooted) phylogenetic network on X is a rooted
directed acyclic graph with no indegree-1 outdegree-1 vertices whose
leaves are bijectively labelled by the elements of X .
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The first phylogenetic network (Buffon, 1755)
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Marcussen et al., Ancient hybridizations among the
ancestral genomes of bread wheat. Science (2014)

Leo van Iersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 7 / 11



Origin of tropical pathogen C. gattii traced to the Amazon

Hagen et al., Ancient dispersal of the human fungal pathogen Cryptococcus gattii
from the Amazon rainforest. PLoS ONE (2013).
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PART 1: NETWORKS FROM TREES

Species a ACCCTAG--TC-ATC---AGC-GAC-C TA-GTATCCCTC---TCTATATAT

Species b ATACTAGTTTT-ATC-AAAGC-GAC-C TA-GTAC---TCGGATCT--ATAT

Species c ATATTAG-TC-GATCTACAGCTGAC-C TAGGTACCCCTCGGATCCATAT-T

Species d ACCCTAGTTTCGGATCCAAGC-GAC-C TA-GTATCCCTC---TCTATATCT

Species e ACC--TG-TCC-ATCTATG-CTGACTC TA-GTATCCCTCAGA-CTATAT-A

edca b edca b

eca db

Gene trees

Species network
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PART 2: NETWORKS FROM SUBNETS

Species a ACCCTAG--TC--ATC---AGC-GAC-CTA-GTACCCTC---TCTATATAT

Species b ATACTAGTTTT--ATC-AAAGC-GAC-CTA-GTA---TCGGATCT--ATAT

Species c ATATTAG--TC-GATCTACAGC-GAC-CTAGGTACCCTCGGATCCATAT-T

Species d ACCCTAGTTTCGGATCCCAAGC-GAC-CTA-GTACCCTC---TCTATATCT

Species e ACC--TG--TCC-ATCT--AGC-GAC-CTA-GTACCCTCAGA-CTATAT-A

ca b

d
c

a
eca

eca db

Trinets

Species network

ec d
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PART 3: NETWORKS FROM SEQUENCES

Species a ACCCTAG--TC--ATC---AGC-GAC-CTA-GTACCCTC---TCTATATAT

Species b ATACTAGTTTT--ATC-AAAGC-GAC-CTA-GTA---TCGGATCT--ATAT

Species c ATATTAG--TC-GATCTACAGC-GAC-CTAGGTACCCTCGGATCCATAT-T

Species d ACCCTAGTTTCGGATCCCAAGC-GAC-CTA-GTACCCTC---TCTATATCT

Species e ACC--TG--TCC-ATCT--AGC-GAC-CTA-GTACCCTCAGA-CTATAT-A

eca db

Species network
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PART 1:

NETWORKS FROM TREES



Tree-based Network Reconstruction
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Nonbinary Trees
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Definition. A phylogenetic tree T is displayed by a phylogenetic network N

if T can be obtained from a subgraph of N by contracting edges.
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Nonbinary Trees
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Definition. A phylogenetic tree T is displayed by a phylogenetic network N

if T can be obtained from a subgraph of N by contracting edges.



Tree-based Network Reconstruction

Hybridization number:

#edges to cut to obtain a tree
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Results

Two binary trees:

• Direct relationship to maximum acyclic agreement forest (MAAF)
• O((28k)k + n3)-time algorithm (Bordewich & Semple 2007)
• O(3.18kn)- time algorithm (Whidden, Beiko & Zeh, 2013)
• Same approximability as directed feedback vertex set

(Kelk, vI, Lekic, Linz, Scornavacca, Stougie, 2012)

Any number of nonbinary trees: (vI, Kelk & Scornavacca, 2014)

• Kernel with 4k(5k)t leaves, with t the number of trees
• Kernel with 20k2(∆+ − 1) leaves, with ∆+ the maximum outdegree
• n f (k) t-time bounded-search algorithm, with f astronomical

Problem: HYBRIDIZATION NUMBER

Given: Collection of phylogenetic trees T , each on the same n leaves, k ∈ N

Question: Does there exist a phylogenetic network that displays each tree

in T and has hybridization number at most k?

Three binary trees:

• ckpoly(n) time algorithm (vI, Lekic, Kelk, Whidden & Zeh, 2014)
(c = 1609891840)
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An agreement forest of two binary trees is a forest that can be obtained from
either tree by deleting edges and unlabelled vertices and suppressing
indegree-1 outdegree-1 vertices
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An acyclic agreement forest with a minimum number of components is called a
Maximum Acyclic Agreement Forest (MAAF)



Agreement Forests

ab c ed

ρ

a b c ed

ρ

An agreement forest of two binary trees is a forest that can be obtained from
either tree by deleting edges and unlabelled vertices and suppressing
indegree-1 outdegree-1 vertices

T1 T2

a e
c

b

d

ρ

Inheritance Graph

An agreement forest is acyclic if its inheritance graph is acyclic

An acyclic agreement forest with a minimum number of components is called a
Maximum Acyclic Agreement Forest (MAAF)

For two binary trees: HYBRIDIZATION NUMBER = |MAAF| - 1
(Bordewich & Semple 2007)
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Agreement Forests vs Hybridization Networks
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Hybridization Number on three trees in ckpoly(n) time
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Hybridization Number on three trees in ckpoly(n) time
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Invisible Components and the Extended AAF
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Four Trees May Not Have an Optimal Canonical Network
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Results

Two binary trees:

• Direct relationship to maximum acyclic agreement forest (MAAF)
• O((28k)k + n3)-time algorithm (Bordewich & Semple 2007)
• O(3.18kn)- time algorithm (Whidden, Beiko & Zeh, 2013)
• Same approximability as directed feedback vertex set
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a b c ed

Trees are encoded by their triplets.

⇔

Trees are encoded by their clusters.
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Encoding Trees
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Trees are encoded by their triplets.

⇔

Trees are encoded by their clusters.

Trees are encoded by their distances.
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Encoding Trees

a b c ed

Trees are encoded by their triplets.

⇔

Trees are encoded by their clusters.

Trees are encoded by their distances.
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Encoding Networks

Trees are encoded by their triplets.

Networks are not encoded by their triplets.

a cb b ac
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b

c
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b

c
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Trinets and Subnets

Are networks encoded by their trinets?

Trees are encoded by their triplets.
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A trinet is a subnet with 3 leaves.

A binet is a subnet with 2 leaves.
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Definition.

• level-k: each biconnected component has hybridization number ≤ k;

• tree-child: each non-leaf vertex has a child with indegree-1.
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Definition.

• level-k: each biconnected component has hybridization number ≤ k;

• tree-child: each non-leaf vertex has a child with indegree-1.

Theorem. (Huber, vI & Moulton) Binary level-1, level-2 and

tree-child networks are all encoded by their trinets.



Trinets and Subnets
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Definition.

• level-k: each biconnected component has hybridization number ≤ k;

• tree-child: each non-leaf vertex has a child with indegree-1.

Theorem. (Huber, vI & Moulton) Binary level-1, level-2 and

tree-child networks are all encoded by their trinets.

Theorem. (Huber, vI, Moulton & Wu, 2015)

General (binary) networks are not encoded by their subnets.
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Reconstructing trees from triplets

a b c ed

Trees are encoded by their triplets

a cb

c bd c ed

a ec

and given any set of triplets, we can

construct a tree displaying them,

if one exists, in polynomial time.

a db a eb

c ad

a ed b ec b ed

(Aho, Sagiv, Szymanski, Ullman, 1981)



Reconstructing networks from trinets

Level-1 networks are encoded by their trinets

• and given a complete set of trinets, we can

construct a level-1 network displaying them,

if one exists, in polynomial time.

(Huber & Moulton, 2013)
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Reconstructing networks from trinets

Level-1 networks are encoded by their trinets

• and given a complete set of trinets, we can

construct a level-1 network displaying them,

if one exists, in polynomial time.

(Huber & Moulton, 2013)

• for an arbitrary set of trinets, this is NP-hard

(Huber, vI, Moulton, Scornavacca & Wu 2014)

• for an arbitrary set of binets, this is polynomial-time solvable

• and also for subnets in which all cycles have size 3.

but solvable in O(3npoly(n)) time



Supernetwork Methods
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PART 3:

NETWORKS FROM

SEQUENCES



Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf,
assign sequences to the internal vertices in order to minimize the total
number of changes.

ACCTG ATCTG ATCTC GTAAA TTACT

Example input
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Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf,
assign sequences to the internal vertices in order to minimize the total
number of changes.

ACCTG ATCTG
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TTCTA

TTAAA

GTAAA TTACT
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Example of one change
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Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf,
assign sequences to the internal vertices in order to minimize the total
number of changes.

ACCTG ATCTG

ATCTG

ATCTA

ATCTC

TTCTA

TTAAA

GTAAA TTACT

1

1

1

2

1 2

1

The parsimony score is 9.
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Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf,
assign sequences to the interior vertices in order to minimize the total
number of changes.

Polynomial-time solvable:

◮ Consider each character (position in the sequences) separately.

◮ Use dynamic programming (Fitch, 1971).
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Small Parsimony Problem on Networks

Given a network and a state for each leaf.

Hardwired Parsimony Score: the minimum number of state-changes
over all possible assignments of states to internal vertices.

Softwired Parsimony Score: the minimum parsimony score of a tree
displayed by the network.
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Example: Input

2

1 2 2 1 3

1

1
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Possible asignment of states to internal vertices

2

1 2 2 1 3

1

1

1

1

1

1

2

2

2

2

1
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Hardwired Parsimony Score = 4
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One of the two trees displayed by the network

2

1 2 2 1 3

1

1
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The parsimony score of this tree is 3

2

1 2 2 1 3

1

1

1

1

1

1

2

2

2

2

1
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The parsimony score of the other tree is 4

2

1 2 2 1 3

1

1

1

1

1

1

2

2

2

2

1

The softwired parsimony score of the network is min{3, 4} = 3
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Hardwired and Softwired scores can be arbitrarily far apart

100

0

0
0

0
0

1

1

1
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Hardwired and Softwired scores can be arbitrarily far apart
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Softwired Parsimony Score = 2
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Hardwired and Softwired scores can be arbitrarily far apart

100

0

0
0

0
0

1

1

1

Softwired Parsimony Score = 2
Hardwired Parsimony Score = Hybridization Number + 1
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The hardwired parsimony score equals the size of a minimum

multiterminal cut in the graph obtained by merging all leaves with the
same state into a single vertex, and letting the merged vertices be the
terminals.
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The hardwired parsimony score equals the size of a minimum

multiterminal cut in the graph obtained by merging all leaves with the
same state into a single vertex, and letting the merged vertices be the
terminals.
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The hardwired parsimony score equals the size of a minimum

multiterminal cut in the graph obtained by merging all leaves with the
same state into a single vertex, and letting the merged vertices be the
terminals.
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The hardwired parsimony score can be computed in polynomial time
when there are two states,
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The hardwired parsimony score can be computed in polynomial time
when there are two states,

and approximated well when there are more than two states.

Theorem (Fischer, vI, Kelk & Scornavacca, 2015)

For every constant ǫ > 0 there is no polynomial-time approximation

algorithm that approximates the softwired parsimony score to a factor

n1−ǫ for a network and a binary character, unless P = NP.

Leo van Iersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 19 / 21



The hardwired parsimony score can be computed in polynomial time
when there are two states,

and approximated well when there are more than two states.

Theorem (Fischer, vI, Kelk & Scornavacca, 2015)

For every constant ǫ > 0 there is no polynomial-time approximation

algorithm that approximates the softwired parsimony score to a factor

n1−ǫ for a network and a binary character, unless P = NP.

Luckily, the softwired parsimony score can be computed efficiently when
the hybridization number (or “level”) of the network is small.
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Main open questions (from all parts)

Is there is an FPT algorithm for Hybridization Number on
multiple nonbinary trees and the hybridization number as only
parameter.
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Main open questions (from all parts)

Is there is an FPT algorithm for Hybridization Number on
multiple nonbinary trees and the hybridization number as only
parameter.

Which classes of networks are encoded by trinets?

How can we search for a network with optimal softwired parsimony
score, over all networks with hybridization number at most k?
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