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Definition

Let X be a finite set. A (rooted) phylogenetic tree on X is a rooted
tree with no indegree-1 outdegree-1 vertices whose leaves are bijectively
labelled by the elements of X.

82 Mya

EMU  Ostrich  Moa

(New Zealand)  Cassowary (australia) .
(New Guinea + Australia) (Afric2) (New zeatand
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EUKARYOTES
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Definition

Let X be a finite set. A (rooted) phylogenetic network on X is a rooted
directed acyclic graph with no indegree-1 outdegree-1 vertices whose
leaves are bijectively labelled by the elements of X.
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The flrst phylogenetlc network (Buffon 1755)
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Marcussen et al., Ancient hybridizations among the
ancestral genomes of bread wheat. Science (2014)

Triticum Aegilops

A i
T. vartu Y
AABB DD
T. turgidum A. tauschii
AABBDD
T. aestivum
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Origin of tropical pathogen C. gattii traced to the Amazon

633 Nmy.

12.29 Nmp

Hagen et al., Ancient dispersal of the human fungal pathogen Cryptococcus gattii
from the Amazon rainforest. PLoS ONE (2013).
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PART 1: NETWORKS FROM TREES

Species a  ACCCTAG--TC-ATC---AGC-GAC-C TA-GTATCCCTC---TCTATATAT
Species b ATACTAGTTTT-ATC-AAAGC-GAC-C TA-GTAC---TCGGATCT--ATAT
Species ¢ = ATATTAG-TC-GATCTACAGCTGAC-C TAGGTACCCCTCGGATCCATAT-T
Species d ACCCTAGTTTCGGATCCAAGC-GAC-C TA-GTATCCCTC---TCTATATCT
Species ¢  ACC--TG-TCC-ATCTATG-CTGACTC TA-GTATCCCTCAGA-CTATAT-A

N - S _—
I gl Vv’
Gene trees /<<\ /(%
a b ¢ d e a b ¢ d e
N— —
—~—

Species network
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PART 2: NETWORKS FROM SUBNETS

Species a  ACCCTAG--TC--ATC---AGC-GAC-CTA-GTACCCTC---TCTATATAT
Species b ATACTAGTTTT--ATC-AAAGC-GAC-CTA-GTA---TCGGATCT--ATAT
Species ¢ ATATTAG--TC-GATCTACAGC-GAC-CTAGGTACCCTCGGATCCATAT-T
Species d ACCCTAGTTTCGGATCCCAAGC-GAC-CTA-GTACCCTC---TCTATATCT
Species ¢  ACC--TG--TCC-ATCT--AGC-GAC-CTA-GTACCCTCAGA-CTATAT-A

N—
—— —
_ /O\ /<>\ X AN\
Trinets a p ¢ c 4 e a ¢ e
Cc
d
N
—— —

Species network
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PART 3: NETWORKS FROM SEQUENCES

Species a ACCCTAG--TC--ATC---AGC-GAC-CTA-GTACCCTC---TCTATATAT
Species b ATACTAGTTTT--ATC-AAAGC-GAC-CTA-GTA---TCGGATCT--ATAT
Species c ATATTAG--TC-GATCTACAGC-GAC-CTAGGTACCCTCGGATCCATAT-T
Species d ACCCTAGTTTCGGATCCCAAGC-GAC-CTA-GTACCCTC---TCTATATCT
SPGCieS e ACC--TG--TCC-ATCT--AGC-GAC-CTA-GTACCCTCAGA-CTATAT-A
S~— "
——

Species network
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PART 1:
NETWORKS FROM TREES



Tree-based Network Reconstruction
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Tree-based Network Reconstruction

c d e b a



Nonbinary Trees

Definition. A phylogenetic tree T is displayed by a phylogenetic network N
if T can be obtained from a subgraph of N by contracting edges.
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Nonbinary Trees

Definition. A phylogenetic tree T is displayed by a phylogenetic network N
if T can be obtained from a subgraph of N by contracting edges.
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Nonbinary Trees

Definition. A phylogenetic tree T is displayed by a phylogenetic network N
if T can be obtained from a subgraph of N by contracting edges.
I,

a b c d e

c d e b a



Tree-based Network Reconstruction

0 Hybridization number:
#edges to cut to obtain a tree




Resulis

Problem: HYBRIDIZATION NUMBER

Given: Collection of phylogenetic trees &, each on the same n leaves, k € N
Question: Does there exist a phylogenetic network that displays each tree
in & and has hybridization number at most k?

Two binary trees:
e Direct relationship to maximum acyclic agreement forest (MAAF)

o O((28k)* + n®)-time algorithm (Bordewich & Semple 2007)

e 0(3.18%n)- time algorithm (Whidden, Beiko & Zeh, 2013)

e Same approximability as directed feedback vertex set
(Kelk, vI, Lekic, Linz, Scornavacca, Stougie, 2012)

Any number of nonbinary trees: (vI, Kelk & Scornavacca, 2014)
e Kernel with 4k(5k)" leaves, with t the number of trees
e Kernel with 20k?(A* — 1) leaves, with A" the maximum outdegree
e n/W¢t-time bounded-search algorithm, with f astronomical

Three binary trees:
e c*poly(n) time algorithm (vI, Lekic, Kelk, Whidden & Zeh, 2014)
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Problem: HYBRIDIZATION NUMBER

Given: Collection of phylogenetic trees &, each on the same n leaves, k € N
Question: Does there exist a phylogenetic network that displays each tree
in & and has hybridization number at most k?

Two binary trees:
e Direct relationship to maximum acyclic agreement forest (MAAF)
o O((28k)* + n®)-time algorithm (Bordewich & Semple 2007)
e 0(3.18%n)- time algorithm (Whidden, Beiko & Zeh, 2013)
e Same approximability as directed feedback vertex set
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Any number of nonbinary trees: (vI, Kelk & Scornavacca, 2014)
e Kernel with 4k(5k)" leaves, with t the number of trees
e Kernel with 20k?(A* — 1) leaves, with A" the maximum outdegree
e n/W¢t-time bounded-search algorithm, with f astronomical

Three binary trees:
e c*poly(n) time algorithm (vI, Lekic, Kelk, Whidden & Zeh, 2014)
(c =1609891840)



Agreement Forests

An agreement forest of two binary trees is a forest that can be obtained from
either tree by deleting edges and unlabelled vertices and suppressing
indegree-1 outdegree-1 vertices
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Agreement Forests

An agreement forest of two binary trees is a forest that can be obtained from
either tree by deleting edges and unlabelled vertices and suppressing
indegree-1 outdegree-1 vertices

PR
L d .~

-
...... 'O LS
" L 3 * A
. hd .
* . 4 .
’ hg ’ )
/]
N s ’ ' 1
sy 2/ \ Vmmmmsmsmmmm== 1
. 1 . '
. q
| ] ', ‘ C d 24
‘\ L4 ‘s "
/ . L4 ~ .

~ L d
------

\ \A “‘ ;2T ’

\ J ':' ° *

o . ' b 1

a b ¢ d e b ¢ d e a L
I 15 Inheritance Graph

An agreement forest is acyclic if its inheritance graph is acyclic
An acyclic agreement forest with a minimum number of components is called a
Maximum Acyclic Agreement Forest (MAAF)



Agreement Forests

An agreement forest of two binary trees is a forest that can be obtained from
either tree by deleting edges and unlabelled vertices and suppressing
indegree-1 outdegree-1 vertices
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An agreement forest is acyclic if its inheritance graph is acyclic
An acyclic agreement forest with a minimum number of components is called a
Maximum Acyclic Agreement Forest (MAAF)

For two binary trees: HYBRIDIZATION NUMBER = |MAAF| - 1
(Bordewich & Semple 2007)



Agreement Forests vs Hybridization Networks
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Agreement Forests vs Hybridization Networks
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Agreement Forests vs Hybridization Networks
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Deletion AAF



Hybridization Number on three trees in c*poly(n) time
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Hybridization Number on three trees in c*poly(n) time
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Deletion AAF
a b c d e
o,
b ¢c d e a
a € g
b
Three trees: C cde b a

HYBRIDIZATION NUMBER > |MAAF]| - 1



Hybridization Number on three trees in c*poly(n) time

o,

Deletion AAF

Three trees: c
HYBRIDIZATION NUMBER > |MAAF]| - 1



Invisible Components and the Extended AAF




Four Trees May Not Have an Optimal Canonical Network



Reduction Rules




Reduction Rules

m no
k | Common pendant subtree



Reduction Rules

Reduce subtree to a single leaf



Reduction Rules

Common chain



Reduction Rules

Reduce chain to a certain length



Resulis

Problem: HYBRIDIZATION NUMBER

Given: Collection of phylogenetic trees &, each on the same n leaves, k € N
Question: Does there exist a phylogenetic network that displays each tree
in & and has hybridization number at most k?

Two binary trees:
e Direct relationship to maximum acyclic agreement forest (MAAF)
o O((28k)* + n®)-time algorithm (Bordewich & Semple 2007)
e 0(3.18%n)- time algorithm (Whidden, Beiko & Zeh, 2013)
e Same approximability as directed feedback vertex set
(Kelk, vI, Lekic, Linz, Scornavacca, Stougie, 2012)

Any number of nonbinary trees: (vI, Kelk & Scornavacca, 2014)
e Kernel with 4k(5k)" leaves, with t the number of trees
e Kernel with 20k?(A* — 1) leaves, with A" the maximum outdegree
e n/W¢t-time bounded-search algorithm, with f astronomical

Three binary trees:
e c*poly(n) time algorithm (vI, Lekic, Kelk, Whidden & Zeh, 2014)
(c =1609891840)



PART 2:
NETWORKS FROM
SUBNETWORKS



Encoding Trees

Trees are encoded by their triplets.

AN AN AN

abc abd abe

= | AAA

AN AN AN AN

a b C d e ace




Encoding Trees

Trees are encoded by their triplets.

Trees are encoded by their clusters.

{a} {b} {c}
& {d} {a, b}

{c,d} {a,b,c,d}

a b C d e {Cl, b,c,d,e}




Encoding Trees

Trees are encoded |

Trees are encoded |

Dy t
Dy t

Trees are encoded |

heir triplets.

heir clusters.

Dy t

heir distances.




Encoding Trees

Trees are encoded by their triplets.

Trees are encoded by their clusters.

Trees are encoded by their distances.

Can we encode networlks?




Encoding Networks

Trees are encoded by their triplets.

Networks are not encoded by their triplets.

: c=> | AN AN | <
abc bc a b



Trinets and Subnets

Trees are encoded by their triplets.

Are networks encoded by their trinets?

LAAAK

a c abd a

| O AN
AP S

T (N)

ﬁNN




Trinets and Subnets

The subnet N|X’ is obtained from N by
1. deleting all vertices that are not on any path from the root to a leaf in X’;
2. deleting all vertices that are on all paths from the root to a leaf in X’;
3. suppressing indegree-1 outdegree-1 vertices and parallel arcs.

LAAAA

a c abd a

2 [n n
AP S

ﬁﬁ?ﬁ?

T (N)



Trinets and Subnets

The subnet N|X’ is obtained from N by
1. deleting all vertices that are not on any path from the root to a leaf in X’;
2. deleting all vertices that are on all paths from the root to a leaf in X’;
3. suppressing indegree-1 outdegree-1 vertices and parallel arcs.
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Trinets and Subnets

The subnet N|X’ is obtained from N by
1. deleting all vertices that are not on any path from the root to a leaf in X’;
2. deleting all vertices that are on all paths from the root to a leaf in X’;
3. suppressing indegree-1 outdegree-1 vertices and parallel arcs.

/.

| 4%
AP

J(N)

o | N
NN

o




Trinets and Subnets

A trinet is a subnet with 3 leaves.
A binet is a subnet with 2 leaves.

—
a
b ?
&
C
d
N e

C C
b ; d b ; e
C C




Trinets and Subnets

Definition.

e [evel-k: each biconnected component has hybridization number < k;
e tree-child: each non-leaf vertex has a child with indegree-1.

LA

a C

| O AN
AP S
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a bd a
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Trinets and Subnets

Definition.
e [evel-k: each biconnected component has hybridization number < k;
e tree-child: each non-leaf vertex has a child with indegree-1.

Theorem. (Huber, vl & Moulton) Binary level-1, level-2 and
tree-child networks are all encoded by their trinets.

NS AWARES
| ;QQQ
Nl By

J(N)




Trinets and Subnets

Definition.
e [evel-k: each biconnected component has hybridization number < k;
e tree-child: each non-leaf vertex has a child with indegree-1.

Theorem. (Huber, vl & Moulton) Binary level-1, level-2 and
tree-child networks are all encoded by their trinets.

\ N N ¢

Theorem. (Huber, vI, Moulton & Wu, 2015)
General (binary) networks are not encoded by their subnets.

2 1A A A
Nl By

J(N)




Reconstructing trees from triplets

Trees are encoded by their triplets

AN AN AN

abc abd abe

= | AAA

AN AN AN AN

a b C d e ace




Reconstructing trees from triplets

Trees are encoded by their triplets

and given any set of triplets, we can
construct a tree displaying them,
if one exists, in polynomial time.

(Aho, Sagiv, Szymanski, Ullman, 1981)




Reconstructing networks from trinets

Level-1 networks are encoded by their trinets

e and given a complete set of trinets, we can
construct a level-1 network displaying them,
if one exists, in polynomial time.

(Huber & Moulton, 2013)
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Level-1 networks are encoded by their trinets

e and given a complete set of trinets, we can
construct a level-1 network displaying them,
if one exists, in polynomial time.

(Huber & Moulton, 2013)

e for an arbitrary set of trinets, this is NP-hard
but solvable in O(3"poly(n)) time

(Huber, vI, Moulton, Scornavacca & Wu 2014)



Reconstructing networks from trinets

Level-1 networks are encoded by their trinets

e and given a complete set of trinets, we can
construct a level-1 network displaying them,
if one exists, in polynomial time.

(Huber & Moulton, 2013)

e for an arbitrary set of trinets, this is NP-hard
but solvable in O(3"poly(n)) time

e for an arbitrary set of binets, this is polynomial-time solvable

(Huber, vI, Moulton, Scornavacca & Wu 2014)



Reconstructing networks from trinets

Level-1 networks are encoded by their trinets

e and given a complete set of trinets, we can
construct a level-1 network displaying them,
if one exists, in polynomial time.

(Huber & Moulton, 2013)

e for an arbitrary set of trinets, this is NP-hard

but solvable in O(3"poly(n)) time
e for an arbitrary set of binets, this is polynomial-time solvable
e and also for subnets in which all cycles have size 3.

(Huber, vI, Moulton, Scornavacca & Wu 2014)



Supernetwork Methods

AR

C e

N displays &7
= N displays A



PART 3:
NETWORKS FROM
SEQUENCES



Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf,

assign sequences to the internal vertices in order to minimize the total
number of changes.

ACCTG ATCTG ATCTC GTAAA TTACT

Example input
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Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf,

assign sequences to the internal vertices in order to minimize the total
number of changes.

TTCTA

ATCTA

ATCTG TTAAA

ACCTG ATCTG ATCTC GTAAA TTACT

Example labelling of internal vertices
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Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf,

assign sequences to the internal vertices in order to minimize the total
number of changes.

TTCTA

ATCTA

ATCTG TTAAA

ACCTG ATCTG ATCTC GTAAA TTACT

Example of one change
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Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf,

assign sequences to the internal vertices in order to minimize the total
number of changes.

TTCTA

ACCTG ATCTG ATCTC GTAAA TTACT

The parsimony score is 9.

Leo van lersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 4 /21



Maximum Parsimony for trees

Small parsimony problem: given a tree and a sequence for each leaf,
assign sequences to the interior vertices in order to minimize the total
number of changes.

@ Polynomial-time solvable:

» Consider each character (position in the sequences) separately.

» Use dynamic programming (Fitch, 1971).

Leo van lersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 5/21



Small Parsimony Problem on Networks

Given a network and a state for each leaf.

@ Hardwired Parsimony Score: the minimum number of state-changes
over all possible assignments of states to internal vertices.

@ Softwired Parsimony Score: the minimum parsimony score of a tree
displayed by the network.

Leo van lersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 6 /21



Example: Input
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Possible asignment of states to internal vertices

1
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Hardwired Parsimony Score = 4

1

1 2 9 1 3

Leo van lersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 9/21



One of the two trees displayed by the network
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The parsimony score of this tree is 3

Leo van lersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 11 /21



The parsimony score of the other tree is 4

The softwired parsimony score of the network is min{3,4} =3

Leo van lersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 12 /21



Hardwired and Softwired scores can be arbitrarily far apart

J—t

o
-

-
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Hardwired and Softwired scores can be arbitrarily far apart

Softwired Parsimony Score = 2

Leo van lersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 14 /21



Hardwired and Softwired scores can be arbitrarily far apart

Softwired Parsimony Score = 2
Hardwired Parsimony Score = Hybridization Number + 1

Leo van lersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015
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The hardwired parsimony score equals the size of a minimum
multiterminal cut in the graph obtained by merging all leaves with the
same state into a single vertex, and letting the merged vertices be the
terminals.

—

o
jury

juy
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The hardwired parsimony score equals the size of a minimum
multiterminal cut in the graph obtained by merging all leaves with the
same state into a single vertex, and letting the merged vertices be the
terminals.
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The hardwired parsimony score equals the size of a minimum
multiterminal cut in the graph obtained by merging all leaves with the
same state into a single vertex, and letting the merged vertices be the
terminals.
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@ The hardwired parsimony score can be computed in polynomial time
when there are two states,
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@ The hardwired parsimony score can be computed in polynomial time
when there are two states,

@ and approximated well when there are more than two states.
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@ The hardwired parsimony score can be computed in polynomial time
when there are two states,

@ and approximated well when there are more than two states.

Theorem (Fischer, vl, Kelk & Scornavacca, 2015)

For every constant e > 0 there is no polynomial-time approximation
algorithm that approximates the softwired parsimony score to a factor
n'=¢ for a network and a binary character, unless P = NP.

Leo van lersel (TUD) Introducing new colleagues 3TU.AMI 8 december 2015 19 /21



@ The hardwired parsimony score can be computed in polynomial time
when there are two states,

@ and approximated well when there are more than two states.

Theorem (Fischer, vl, Kelk & Scornavacca, 2015)

For every constant e > 0 there is no polynomial-time approximation
algorithm that approximates the softwired parsimony score to a factor
n'=¢ for a network and a binary character, unless P = NP.

Luckily, the softwired parsimony score can be computed efficiently when
the hybridization number (or “level”) of the network is small.
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Main open questions (from all parts)

@ Is there is an FPT algorithm for HYBRIDIZATION NUMBER on
multiple nonbinary trees and the hybridization number as only
parameter.
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Main open questions (from all parts)

@ Is there is an FPT algorithm for HYBRIDIZATION NUMBER on
multiple nonbinary trees and the hybridization number as only
parameter.

@ Which classes of networks are encoded by trinets?

@ How can we search for a network with optimal softwired parsimony
score, over all networks with hybridization number at most k?
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