

Decision support for CRM value chain actors

Dr. C.F. Blanco Rocha

Senior Scientist | Circularity & Sustainability Impact Energy and Materials Transition Unit (TNO)

Smart solutions for clients & partners

Knowledge transfer

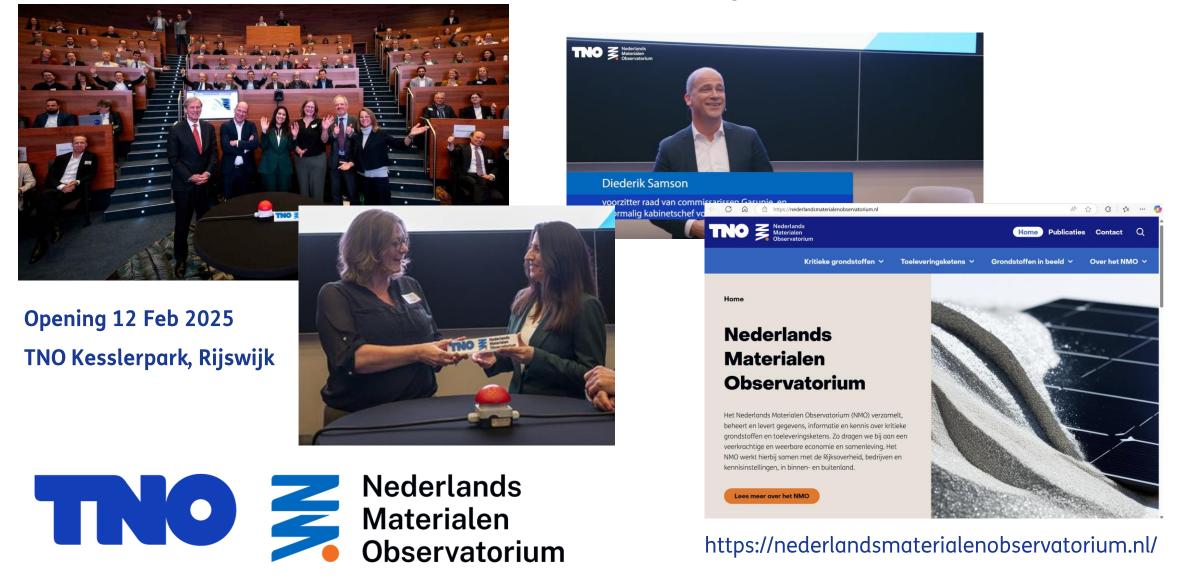
Knowledge exploitation by spin-offs, licences, in partnership with other companies

Knowledge application

Contract research for and with clients

Develop fundamental knowledge

Together with universities


Knowledge development

In public-private partnership with partners from the golden triangle

Netherlands Material Observatory (NMO)

https://nederlandsmaterialenobservatorium.nl/

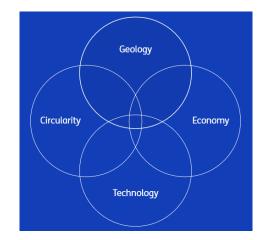
Dutch National Raw Material Strategy (NGS)

Launched in December 2022 by EZK before the CRMA

In line with the EC CRM Act (CRMA), the Netherlands aims to strengthen its economic resilience while reducing dependency risks on critical and strategic raw materials.

This is partly in the context of the growing demand for critical raw materials, for example due to the energy transition and the digital transformation. NGS themes are:

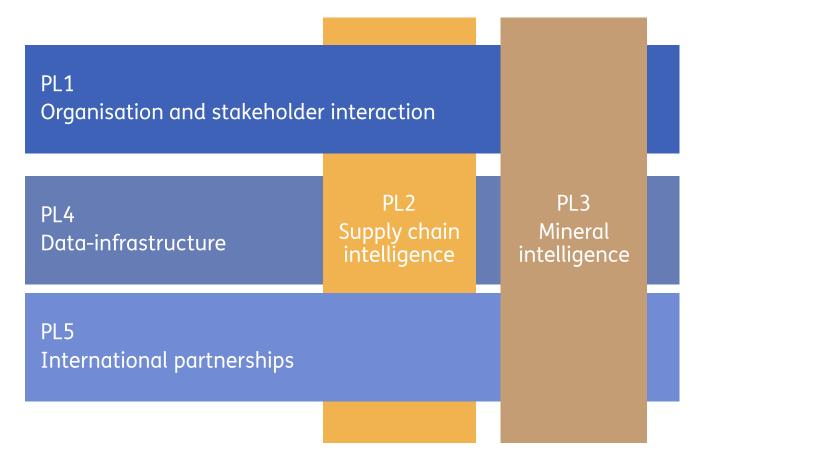
- 1. Circularity and innovation
- 2. Sustainable European mining & refining
- 3. Diversification
- 4. Sustainable international chains
- 5. Knowledge building and monitoring


THO Rederlands Materialen Observatorium

NMO scope

- Acquiring, collecting, managing and providing data, information and insights on the current and future demand, supply and availability of critical raw materials within the Netherlands.
- Gain insight into the **dependency on critical raw materials** and processed materials throughout the value chain.
- Determining the **effects of circular policies** on the supply and demand of critical raw materials, processed materials and finished products.
- Evaluation of **supply risks and measures** taken by governments.
- Evaluating **technological innovations** relevant to the supply and demand of critical raw materials and processed materials.

Specific tasks:


- Compose and execute on the Netherlands **exploration program**
- Constitute a central point of contact regarding **advise** to government.

Netherlands Material Observatory (NMO)

The platform for information exchange on critical materials for The Netherlands serving industry, society, and government.

Developed & Selected supply chain wethodologies vulnerabilities

Observatory (incl. advice)

Exploration program

P

Signalling

network

Deep dive: Deep Sea Mining

Data & Information infrastructure (initial)

Answering the what if questions

A decision support framework for CRM value chain actors

Critical Raw Materials are... well, critical

 \equiv

Donald Trump's interest in buying Greenland 'not a joke', Marco Rubio says

Reuters

Show Caption Y

WASHINGTON - President <u>Donald Trump's</u> interest in buying Greenland is "not a joke," Secretary of State Marco Rubio said in an interview on Thursday, adding that acquiring Greenland was in U.S. national interest and needs to be solved.

The New York Times

Subscribe for €0.50/week

 Russia-Ukraine War >
 The Latest
 Photos
 Debate Over Europe's Defenses

Trump Urges Trading Ukraine's Rare Earth Minerals for More U.S. Aid

Ukraine has already emphasized that by supporting its war effort, the U.S. could get access to the country's wealth of critical minerals like lithium and uranium.

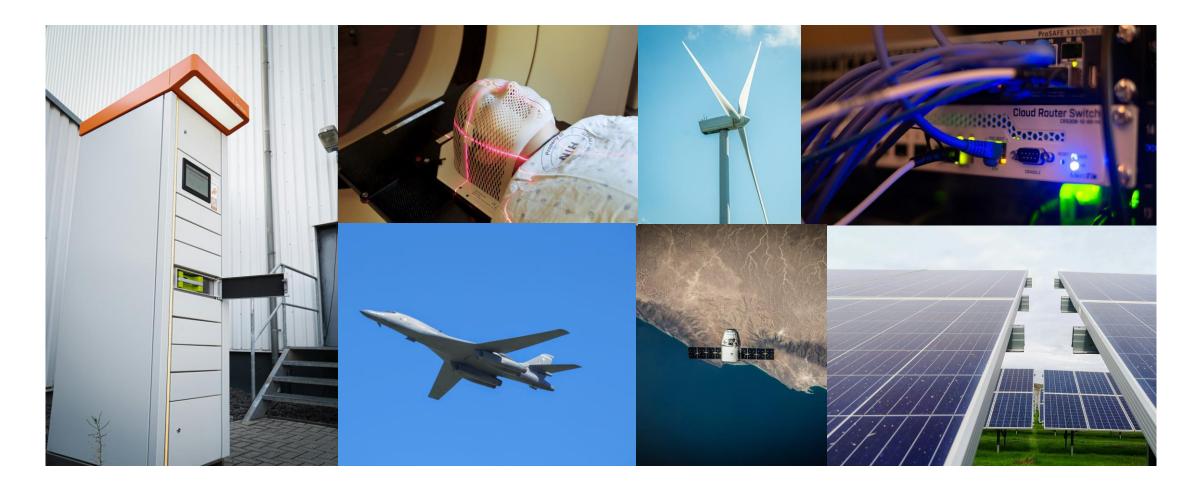
POLITICO

German election War in Ukraine Newsletters Po

Newsletters Podcasts Poll of Polls Policy news Events

NEWS > TRADE

EU offers its own 'win-win' minerals deal to Ukraine


"The added value Europe offers is that we will never demand a deal that's not mutually beneficial," top official Stéphane Séjourné says.

D LISTEN C SHARE

innovation

Critical Raw Materials are... well, critical

But what do we ultimately care about?

An ethical question.

Our role:

- Bring worldviews & interests to light •
- Understand impact mechanisms
- Measure ٠
- Identify conflicts
- Identify non-conflicts
- Simplify and focus the decision space ٠

11

innovation

Our CRM Decision Support Framework

Objective

Improve **resilience**, **sustainability**, **circularity**, and **competitiveness** of CRM supply chains in NL & EU.

We model material flows and environmental impacts

Assess material flows and socioeconomic/environmental implications of macro (policy changes, economic shifts, supply disruptions), meso (sector trends), and micro-level (technological innovations) interventions and events.

To provide decision-support

- Assessing uncertainties & identifying key influencing factors.
- Identifying decisions that can lead to **black swans**
- Using multi-objective optimization to **determine optimal strategies** amidst trade-offs.

The engine: from macro to micro and back

Scenarios

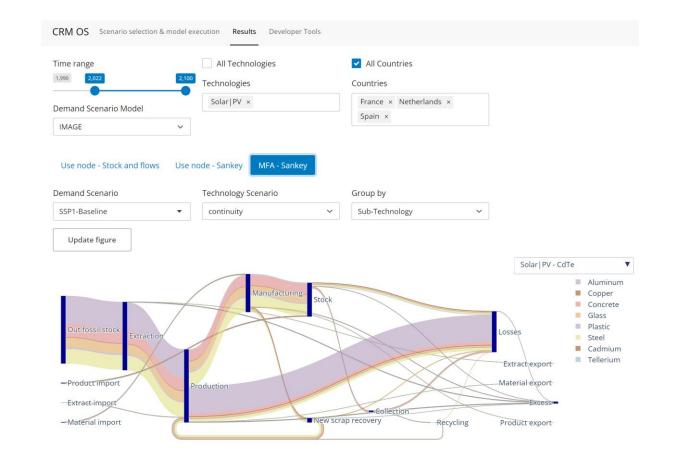
States Produce

Interventions

Fig. 14: Market share of metallization for SHJ solar cells.

macro indicators

micro indicators

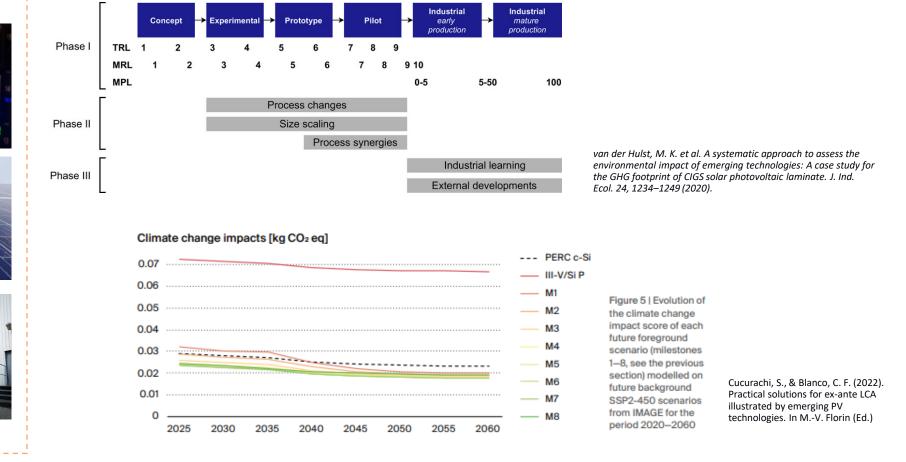


innovation

The engine: from macro to micro and back

Dynamic Materials Flow Analysis

- Quantified material and product flows of the full CRM value chains per (sub)technology, country and scenario/model => over time
- What is the role of recycling versus the need for primary materials?
- Do we expect supply/processing bottlenecks?
- How is the current system performing? Is there potential for increasing collection and recycling?
- What is the effect of policy interventions, material substitution and technology innovations?



innovation

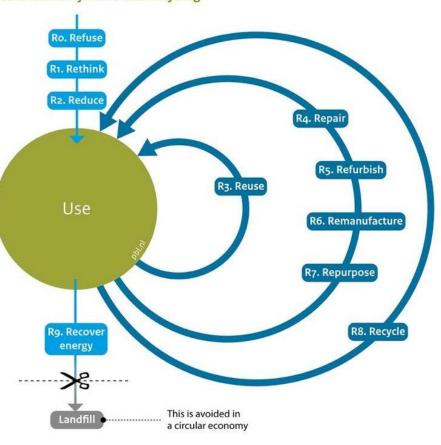
The engine: from macro to micro and back

Prospective Life Cycle Assessment

Broad criteria & indicators

A comprehensive literature review yielded > 100 indicators.

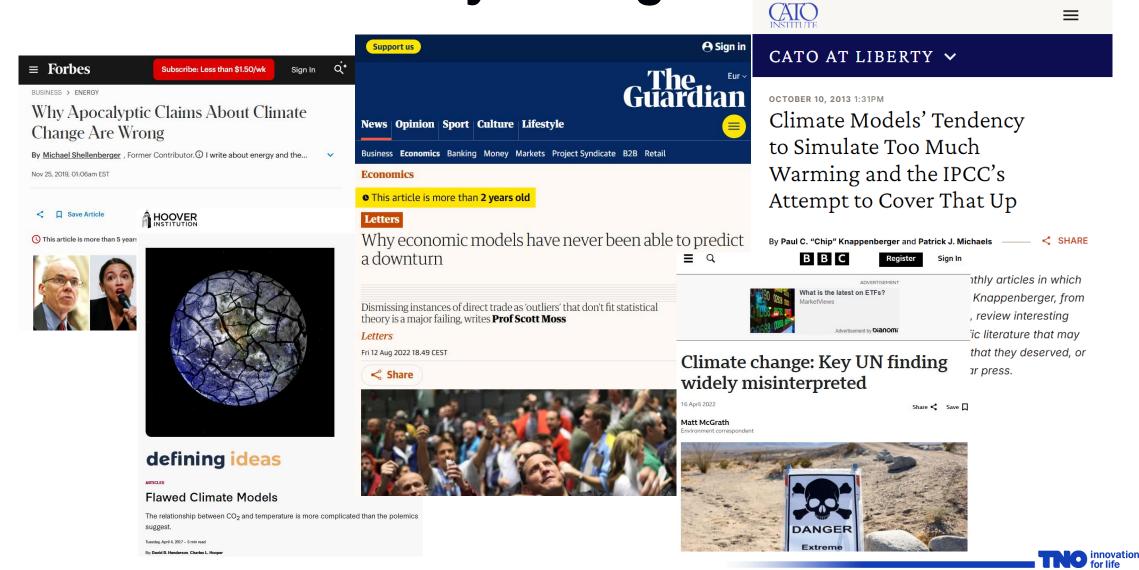
A preliminary selection that fulfil the following criteria:


- incorporate resilience, vulnerability, or sustainability dimensions.
- serve as actionable tools for policymakers to design interventions (e.g., diversifying supply sources, supporting circular policies).
- enable CRM stakeholders to identify risks, prioritize actions, and align with market and regulatory demands.

Category	Indicator	Category	Indicator
Sustainability	Environmental LCA indicators	Vulnerability	Criticality Index
	Material Footprint		Exposure to Strategic Sectors
Circularity	End-of-life recycling input rate (EoL-RiR)		Sectors
	End-of-life recycling rate (EoL-RR)		By-product dependence
	Dissipative losses		Political instability
	Material Substitution Potential	Competitiveness	Cost Competitiveness
Resilience	Self-sufficiency of extraction, processing and manufacturing		Earning Power Contribution
	Buffer Capacity		
	Import Dependency Ratio (non-EU)		Resource competition
	Scarcity potential		Cost of extraction

Flexible intervention archetypes

Intervention Archetype	Examples
Regulatory or Policy Interventions	 Mandatory recycling targets Tax on virgin material extraction Bans on single-use products
Technological or Process Innovations	 Electrochemical recycling for CRMs Rare-earth material substitution Digital material tracking systems
Economic or Market-Based Instruments	 Subsidies for secondary raw materials Deposit-refund schemes Resource extraction taxes
Circular Business Model Transformations	- Product-as-a-service models - Modular product design - Take-back programs
Behavioral or Social Change Interventions	 Public awareness campaigns Nudging for waste sorting Educational programs on circularity
Supply Chain Restructuring	 Localizing supply chains Manufacturer-recycler partnerships Diversified sourcing for CRMs
Material Efficiency or Resource Optimization	 Lightweighting products Reducing manufacturing scrap Industrial symbiosis
Research and Development	 Funding alternative material research Increased technology efficiencies Innovative recycling technologies
Infrastructure Development	 Recycling facilities Renewable energy infrastructure Smart city waste systems
Governance and Institutional Change	 Certification schemes Harmonized international standards


Circular economy: more than recycling

innovation

for life

"But models are always wrong...

... and black swans lurk everywhere"

Black swans

- Very low likelihood occurrences that can have massive consequences on systems or societies.
- They significantly alter the course of history or the operational context of businesses.
- After the event, people claim it was obvious in hindsight or should have been better anticipated.

"History and societies do not crawl. They make jumps. They go from fracture to fracture, with a few vibrations in between. Yet we (and historians) like to believe in the predictable, small incremental progression."

Taleb, "The Black Swan: The Impact of the Highly Improbable" (2007)

Would we rather go blind into the future?

A response:

Keep it complex

When knowledge is uncertain, experts should avoid pressures to simplify their advice. Render decisionmakers accountable for decisions, says Andy Stirling.

23/30 DECEMBER 3010 | VOL 446 | NATURE | 1036 © 2000 Macmillan Publishers Limited, All rights reserved

n best serve socie

Even when expert

knowns to meas

ncommon for senie

ere is no alternat contestable policy and participatin

his practice is misg An overly narrow

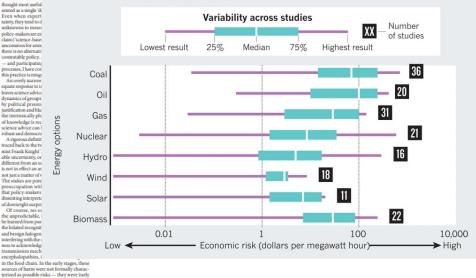
saves science advic

The stakes are pote reoccupation wit hat policy-makers

dissenting interpreta of downright surpri Of course, no-o

he unpredictable, se learned from pas

interfering with the


warnings' offered by dissenting voices. Policy

The question is how to move away

adations that miss such warnings court overconfidence and error.

THE PERILS OF 'SCIENCE-BASED' ADVICE

A survey of 63 peer-reviewed studies of health and environmental risks associated with energy technologies. W there hard about he Individual studies offer conclusions with surprisingly narrow uncertainty ranges, yet together the literature offers no clear consensus for policy makers.

nature		View all journals	Q Search	h Log in		
Explore content ~	About the journal ~	Publish with us ~	Subscribe	Sign up for	alerts 💭	RSS feed

nature > comment > article

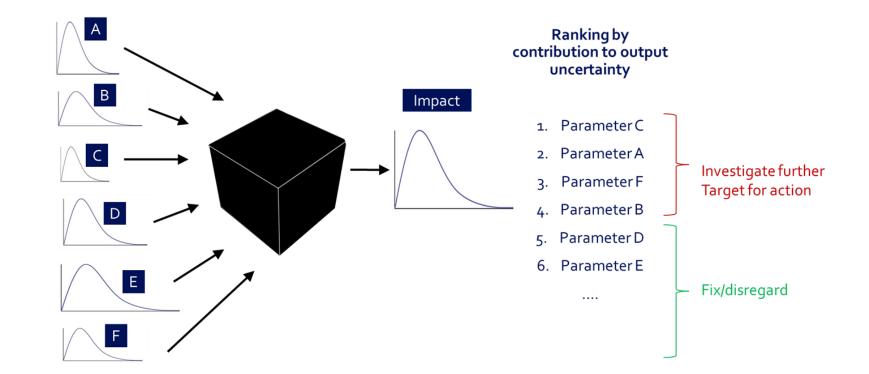
COMMENT | 24 June 2020

Five ways to ensure that models serve society: a manifesto

Pandemic politics highlight how predictions need to be transparent and humble to invite insight, not blame.

By Andrea Satelli 🗄, Gabriele Bammar, Isabelle Bruno, Erica Charters, Monica Di Fiore, Emmanuel Didier, Wendy, Netion Espeland, John Kay, Samuele Lo Piano, Deborah Mayo, Roger Fielde Jr. Tommaso Portaluri. Theodore M. Porter, Arnald Puy, Ismael Rafols, Jerome R. Ravetz, Erik Reiners, Daniel Sarewitz, Ehilio B. Stark, Andrew Stirling, Jeroen van der Shulls & Paolo Vineis

🖌 (f) 🛤



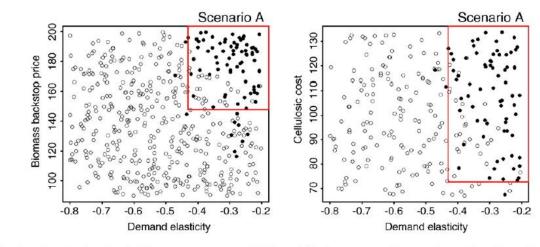
"Torture the data until it confesses" "Torture the data until it confesses proves innocent"

E. Plischke (2015)

Robust decision support strategy #1: <u>Global</u> Sensitivity Analysis

"What are the most influential factors towards uncertainty in the models' results?"

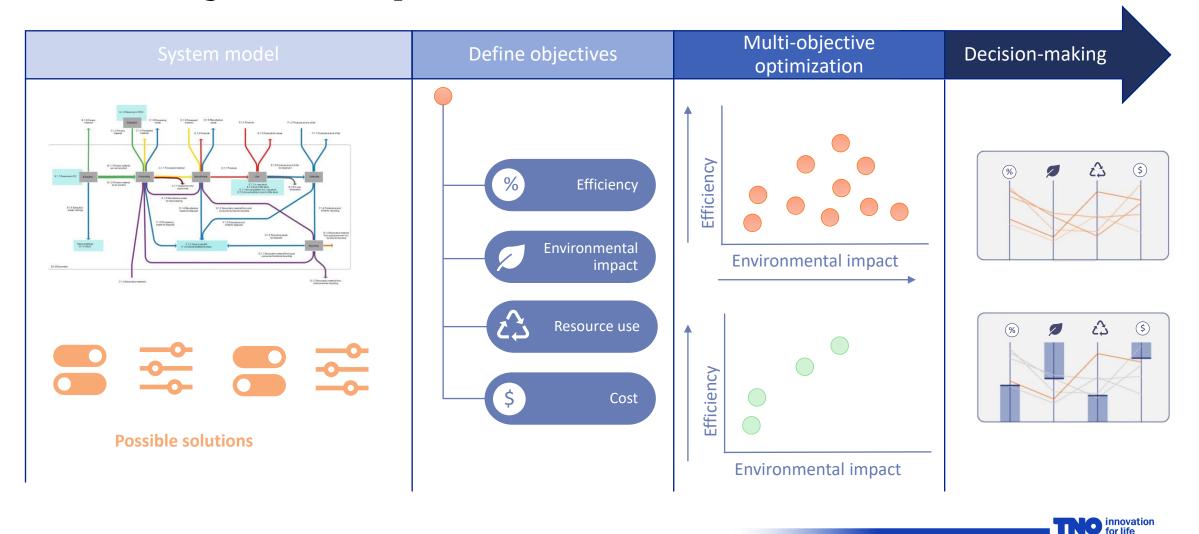
Robust decision support strategy #2: Scenario Discovery


Table 1 Range of values considered for uncertain model input parameters.

"Under what	Uncertain Model Input Parameter	Low	High	Units
	Biofuel Production Cost	67	134	\$ per unit input
conditions does the	Low-cost biomass supply	450	1000	millions of tons
	Feedstock supply distribution	0	1	pessimistic to optimistic
25×25 policy*	Biofuel yield	80	100	gallons per ton
	Oil supply elasticity	0.2	0.6	
wa avulta tu	Transportation demand elasticity	-0.2	-0.8	
results in	Electricity co-product	0	2	kWh per gallon
	Shift in oil supply curve	-10	10	% change
unacceptably high	Biomass backstop price	90	200	\$ per ton

*policy requiring 25 percent of electricity and motor fuels to be derived from renewable sources by 2025.

economic


costs?"

Bryant & Lempert, 2010

Fig. 5. Cases in database plotted as function of: a) first two parameters and b) first and fourth parameters shown in Fig. 4. Black and open dots show high-cost and lower cost cases, respectively. Red lines show parameters values corresponding to the boundaries of Scenario A.

Robust decision support strategy #3: Multi-objective optimization

Thank you for your attention

3 B B B A A

O TNO Energy & Materials Transition, Princetonlaan 6, Utrecht

felipe.blancorocha@tno.nl

+31 6 275 22402

TNO