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Prelude.
What do you know about energy system design?



Designing
energy system.
How?

What methods, approaches or tools come to mind to support the
(re)design of new energy systems?
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By the end of today’s session, you will be able to:
Lea rning A. Discuss the shortcomings of conventional energy system design

Obje(:tlves. B. Select suitable methods to deal with such shortcomings



Part A.

Conventional system design. What's wrong with it?



We must deploy new renewable, transmission and storage capacity.
But how much? and where?
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COz-vrij import pandas as pd PART 1
elektriciteitssysteem from plotting utilities import plot dispatch, plot capacity, plot network OVERVIEW FOR POLICY MAKERS
. calliope.set_log_verbosity('INFO', include_solver output=False) # Defines how much information you get from the machine a:
1. Simple run to find cost-optimal system design at different resolutions
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alliope.Model('model files/model.yaml', scenario='brownfield capacities')

.20 09:45:42] INFO Model: initialising
20 09:45:42] INFO (scenarios, brownfield_capacities ) | Applying the following overrides: ['brownfield_capacil

° ¢ .
" X N 20 00:45:42] INFO Model: preprocessing stage 1 (model_run) DD
-— Innovation " “o |20 09:45:50] INFO Model: preprocessing stage 2 (model data) \
20 09:45:59] INFO  Model: preprocessing complete
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he model in 'planning' mode to find the cost-optimal system design
iid()
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-20 ©9:46:17] INFO Model: backend build starting
20 09:46:17] INFO  Math preprocessing | added file 'plan’.
20 09:46:17] INFO  Math preprocessing | added file ‘custom math/import export share.yaml'.
Bl 20 09:46:17] INFO  Math preprocessing | validated math against schema.
-20 ©9:46:18] INFO Optimisation Model | parameters | Generated.
20 09:46:20] INFO  Optimisation Model | Validated math strings.
20 09:46:21] INFO  Optimisation Model | variables | Generated.
20 09:46:25] INFO  Optimisation Model | global expressions | Generated.
20 09:46:34] INFO  Optimisation Model | constraints | Generated.
20 09:46:34] INFO Optimisation Model | piecewise constraints | Generated.
20 09:46:34) INFO  Optimisation Model | objectives | Generated.
20 09:46:34] INFO  Model: backend build complete
|20 09:46:40] INFO  Optimisation model | starting model in plan mode.
-20 ©9:46:58] INFO Backend: solver finished running. Time since start of solving optimisation problem: 0:00:17.999459

entso@ Mode:Command @ Ln1,Col1 example_design_optimisation.ipynb [B1

Energy planning models provide quantitative insights on such questions.

How? turning those into a mathematical problem, for which an ‘optimal’
solution can be found .

minimum cost .



Cost-optimality.

Is it desirable?

landscape change long term costs

Why would a cost-optimal energy system design be potentially
undesirable in practice?
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Cost-optimality.
s it desirable? e

five years later,
strong opposition to
wind power!

Lombardi, Pickering, Colombo, Pfenninger. Joule, 2020. doi.org/gg8z6v
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Two issues when applied to socio-technical systems:

1. Real-world decisions involve much more than economic cost
(social acceptance, environmental impact, ...)

Cost-optimality.
Generalisable
shortcomings

And multi-objective optimisation won't help! We cannot
parametrise all that matters for real-world decisions



Two issues when applied to socio-technical systems:

2. Itis pointless to fixate on the minimum cost considering the
uncertainty surrounding all cost assumptions
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Cost-optimality. Fole
Generalisable

Shortcomings Not-too-distant
cost
Minimum \.J
cost v e

decision variables
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Change relative to total cost-optimal renewable capacity (%)
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Lombardi, van Greevenbroek, Grochowicz, Lau, Neumann, Patankar, Vagero. Joule, 2025. doi.org/p8b5

Solar PV
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Part B.

(Next-generation) Modelling to Generate Alternatives



Methods to explore the near-optimal region have been proposed
in 1979 and then developed throughout the ‘80s

They are known as Modelling to Generate Alternatives (MGA)

MANAGEMENT SCIENCE
Vol. 25, No, 5, May 1979
Printed in U.5.A.

Modelling to YR VLANNIRGE S ™

G enerate E. DOWNEY BRILL, JR.}

° When applied to public-sector planning, traditional least-cost optimization models and
Altern atlve s their offspring, contemporary multiobjective models, have often been developed under the
¢ optimistic philosophy of obtaining “the answer.” Frequently, such models are not very useful

because there is a multitude of local optima, which result from wavy indifference functions,

and because important planning elements are not captured in the formulations. Omitted

elements, in fact, may imply that an optimal planning solution lies within the inferior region

of a multiobjective analysis instead of along the noninferior frontier. The role of optimization

methods should be re-thought in full recognition of these limitations and of the relevant

planning process. They should be used to generate planning alternatives and to facilitate their

evaluation and elaboration; they should also be used to provide insights and serve as catalysts

for human creativity. As illustrated by recent examples, these roles may require the use of

several models as well as new types of optimization formulations and modified algorithms

and computer codes.
(GOVERNMENT; OPTIMIZATION MODELS; PLANNING; POLICY ANALYSIS)



Modelling to
Generate
Alternatives.

Repeat

Find optimal Set / update Re-run Many
solution variables weights with new objective alternatives
min cost min weighted sum of decision

variables

while cost within
n% of optimum

/\/

simple brilliant idea,
application limited to
‘sma\\' moole\s Equivalent to:

max difference from
previous solutions

Adapted from: Lombardi, Pickering, Pfenninger. Applied Energy. 2023. doi.org/10.1016/j.apenergy.2023.121002
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Modelling to
Generate
Alternatives.
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Lombardi, van Greevenbroek, Grochowicz, Lau, Neumann, Patankar, Vagero. Joule, 2025. doi.org/p8b5
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Next-gen
MGA.

(selected illustrative examples)

Lau, Patankar, Jenkins. Env. Res.: Energy, 2025. doi.org/p8nk

More efficient and
robust computation
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Neumann, Brown. iScience, 2023. doi.org/g27qjq

Lombardi, Pickering, Pfenninger. App. En., 2023. doi.org/j457
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Intuitive and practically
applicable outputs

Vagero, van Greevenbroek, Grochowicz, Roithner.

arXiv, 2025. doi.org/p8nm
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SYSTEM DESIGN OPTIONS NL

Exploration Probabilistic results
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An MGA integration ladder.
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Lombardi, van Greevenbroek, Grochowicz, Lau, Neumann, Patankar, Vagero. Joule, 2025. doi.org/p8b5
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Modelling to
Generate
Alternatives.

W

Discuss with who's sitting next to you
(groups of 2-4 people)

5 minutes!

hat are we still missing?

hat is not convincing enough?

hat is problematic?

, VEUAS
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Next-gen
MGA.

Future work

Long-term pathways
(multi-horizon optimisaton)

Dealing with non-convex
problem formulations

More efficient parametric
uncertainty integration

More real-world demos
and human interface
developmentts




Conventional optimisation provides a false sense of certainty

Near-optimality enables technically-robust and socially-viable designs

Computational cost can be tailored to needs and keeps improving
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