

PAELLA:

Personalized student Activation in Engineering-education:

Leveraging Learning Analytics for an engaging blended

learning course design

PerActiLA:

Personalized Student Activation through Learning Analytics-based insights about students’ learning processes

Progress Report R2

Extracting indicators from Canvas data

Version 1: course 1 in Quarter 4

19.09.2022

Eindhoven University of Technology

Authors: Dr. Rianne Conijn & drs. M.Sc. Sonja Kleter

1

Introduction

In the PerActiLA project, we aim at providing helpful interventions to students in

ongoing courses who have been identified as having a high likelihood to fail the

course. In report R1, we describe more details and a motivation of this approach.

The identification of students, as well as the evaluation of the effects of the

intervention, make use of students’ Learning Analytics, that is the clickstream data

of the TU/e Learning Management System (LMS) Canvas.

In this report, we show how to create a list of Canvas indicators (variables) that

describe students’ use of the LMS. Some of these variables, especially those that

make use of Canvas data in the first few weeks of the course, can be of value for

the creation of predictive models that identify students who may fail the course.

Other variables, especially those that make use of Canvas data in later weeks of

the course, may be of use to examine whether the intervention has led to a change

in the students’ use of the LMS. Of course, for a comprehensive analysis of the

effects of the intervention, other data should be used in addition.

In the following, we provide the complete R script that can be used to pre-process

the raw Canvas data tables into data sets that researchers or teachers can analyze

in any software that allows importing .csv files. The script leads to the generation

of the following Canvas variables:

General course indicators

• time between course publication and first log in-session
• time between course publication and first opening of study guide

• time between course publication and first opening of schedule
• time between course publication and first opening of course information page

• time between last lecture day and last log in-session (last Friday of course
(23.59).

Session indicators

• The number of sessions
• The number of clicks per session

• The total session time in minutes
• The average session time in seconds
• The standard deviation of session times in seconds

• The average time between two sessions in seconds
• The standard deviation of the time between two sessions in seconds

• The maximum time between two sessions in seconds
• The average start time of session

Assignment indicators

• Number of clicks in assignments
• Number of unique submitted assignments
• Number of unique submitted assignments after deadline (submissions submitted

after the due_date)

2

All assignment indicators are calculated over the full course and per week of the
course.

Quiz indicators

• number of clicks in a quiz
• number of unique submitted practice quizzes (quiz_type = practice_quiz/survey

OR time_limit = -1)
• number of unique submitted exam-relevant quizzes (quiz_type =

assignment/graded_survey)

• number of unique quizzes attempted more than once (using quizzes that allowed
more than one attempt)

• mean percentage of time taken exam-relevant quiz (divided by total allowed
time)
• mean time taken practice quiz (min)

• mean percentage of correct quiz answers (for most successful attempts; note
that multiple points may be earned per question)

All quiz indicators are calculated over the full course and per week of the course.

Discussion forum indicators

• Number of forum clicks
• Number of announcement clicks

• Number of forum topics posts
• Number of forum reply posts

File and video indicators

• number of clicks on files
• number of unique file accessed (including inline views & downloads)
• number of unique file downloads (via ‘download’ in url requests)

• number of clicks on video files (mediafiles directly uploaded on canvas with mp4
type of extension (file_type in file_dim))

• number of unique accessed video files
• number of clicks on livestreamed videos (media accessed via bigbluebutton,
Canvas conferences, or panopto)

• number of unique accessed livestreamed videos (canvas conferences)

All file indicators are calculated over the full course and per week of the course.

This script should be useful to others who are interested in preparing Canvas click stream data

for further data analyses. As it is not always useful to post code in a plain pdf- or word-

document, we also made an HTML version of it that can be found here:

https://rpubs.com/RianneConijn/CanvasIndicators

https://rpubs.com/RianneConijn/CanvasIndicators

3

Preparing the data

The following describes the code for extracting learning analytics indicators from

data obtained from the learning management system Canvas. The dataset can be
retrieved from the Canvas API. This dataset consists of a total of > 100 tables. An
overview of all the tables can be found at https://portal.inshosteddata.com/docs.

In the following, we assume that the data are stored as .parquet-files. Accordingly,
the package arrow is needed to load these data. To transform the data, two

packages are used: tidyverse and lubridate.

library(tidyverse)

library(lubridate)

library(arrow)

options(scipen=999)

path <- "your_path_here"

Loading the requests table

For the most part, we will work with the requests-table. This table includes all
application server requests, which can be seen as the raw clickstreams of students

interacting with the Canvas learning management system. In this case, we will
work with a requests table made from a subset of courses in the fourth quartile of

the academic year 2021-2022, which ended at June 24th, 2022.

requests <- read_parquet(paste0(path, "requests0.snappy.parquet"),

col_types = cols(user_id = col_character(),

course_id = col_character(),

discussion_id = col_character(),

assignment_id = col_character(),

quiz_id = col_character()),

as_tibble = TRUE) %>%

na_if("\\N")

quartile <- 4

year <- 21

endcourse <- "2021-06-24 23:59:99"

Filtering the requests table

Now, we will first filter the requests table based on the information that we need.
Some possible filters include:

• Removing non-clicks (server pings)
• Filtering a subset of courses

• Filtering a subset of users
• Filtering clicks made in a specific time range (e.g., two weeks before the course

start up to two weeks after the final exam)

For the latter, additional information is needed about the course structure in the

university, to identify the lecture and exam weeks. The yearly week numbers need
be to manually mapped to the week numbers as used in the university’s academic

calendar.
Below, you can find an example function that identifies the week labels according
to the academic calendar: calculate_weeklabel(). Here the week labels are defined

https://portal.inshosteddata.com/docs

4

as follows: w0 indicates the two weeks prior to the course, w1 indicates the first

lecture week, w2 indicates the second lecture week (and so on), ew1 indicates the
first exam week, and ew3 indicates the two weeks after the exam period. The

suffix ‘a’ indicates a holiday week (e.g., Christmas holiday). For example, w3a, is
a break after the 3rd lecture week.

weeklabels checked for Q3/Q4 2019-2020 and Q1/Q2/Q3/Q4 2020-2021 and Q4 2021-

2022

calculate_weeklabel <- function(weekno, quartile, year){

weeklabel =

case_when(((weekno == "15" & quartile == "3") |

(weekno == "26" & quartile == "4") |

(weekno == "44" & quartile == "1") |

(weekno == "03" & quartile == "2")) ~ "ew1",

((weekno == "16" & quartile == "3") |

(weekno == "27" & quartile == "4") |

(weekno == "45" & quartile == "1") |

(weekno == "04" & quartile == "2")) ~ "ew2",

((weekno %in% c("17", "18") & quartile == "3") |

(weekno %in% c("28", "29") & quartile == "4") |

(weekno %in% c("46", "47") & quartile == "1") |

(weekno %in% c("05", "06") & quartile == "2")) ~ "ew3",

((weekno %in% c("04", "05") & quartile == "3") |

(weekno %in% c("15", "16") & quartile == "4") |

(weekno %in% c("34", "35") & quartile == "1") |

(weekno %in% c("44", "45") & quartile == "2")) ~ "w0",

((weekno == "06" & quartile == "3") |

(weekno == "17" & quartile == "4") |

(weekno == "36" & quartile == "1") |

(weekno == "46" & quartile == "2")) ~ "w1",

((weekno == "07" & quartile == "3") |

(weekno == "18" & quartile == "4") |

(weekno == "37" & quartile == "1") |

(weekno == "47" & quartile == "2")) ~ "w2",

((weekno == "08" & quartile == "3" & year == 19) |

(weekno == "09" & quartile == "3" & year == 20) |

(weekno == "19" & quartile == "4") |

(weekno == "38" & quartile == "1") |

(weekno == "48" & quartile == "2")) ~ "w3",

((weekno == "09" & quartile == "3" & year == 19)) ~ "w3a",

((weekno == "08" & quartile == "3" & year == 20)) ~ "w2a",

((weekno == "10" & quartile == "3") |

(weekno == "20" & quartile == "4") |

(weekno == "39" & quartile == "1") |

(weekno == "49" & quartile == "2")) ~ "w4",

((weekno == "11" & quartile == "3") |

(weekno == "21" & quartile == "4") |

(weekno == "40" & quartile == "1") |

(weekno == "50" & quartile == "2")) ~"w5",

((weekno == "12" & quartile == "3") |

(weekno == "22" & quartile == "4") |

(weekno == "41" & quartile == "1") |

(weekno == "51" & quartile == "2")) ~ "w6",

((weekno %in% c("52", "53") & quartile == "2")) ~ "w6a",

((weekno == "13" & quartile == "3") |

(weekno == "23" & quartile == "4") |

(weekno == "42" & quartile == "1") |

5

(weekno == "01" & quartile == "2")) ~ "w7",

((weekno == "14" & quartile == "3") |

(weekno == "24" & quartile == "4") |

(weekno == "43" & quartile == "1") |

(weekno == "02" & quartile == "2")) ~ "w8",

((weekno == "25" & quartile == "4")) ~ "w9")

}

Below, we filter the requests table in two ways:
• Removing clicks outside course pages
• Removing non-clicks (server pings)

• Filtering clicks made in a specific time range (e.g., two weeks before the course
start up to two weeks after the final exam)

requests1 <- requests %>%

#remove clicks outside course pages

filter(!is.na(course_id)) %>%

group_by(course_id, user_id) %>%

#remove non-clicks (server pings)

filter(web_application_action != "ping") %>%

mutate(

timestamp = as.POSIXlt(timestamp),

quartile = quartile,

) %>%

arrange(timestamp, .by_group = TRUE) %>%

mutate(

weekno = strftime(timestamp, "%V"),

weeklabel = calculate_weeklabel(weekno, quartile, year)) %>%

remove clicks outside timeframe

filter(!is.na(weeklabel))

Extending the requests table

The next step is to extend the clickstream data by adding add information on the

session in which a server request was made. Within the requests-table there is
already an indicator for session (session_id). Here, a new session is created when

the user is prompted to log in to the learning management system again. However,
with single-sign-on, there are usually only a few sessions, which might stretch over

a couple of weeks. Accordingly, we define a learning session as follows:
A sequence of activities from a single user within the learning management
system, without the user being inactive for more than 30 minutes.

requests2 <- requests1 %>%

group_by(course_id, user_id) %>%

mutate(

diff_time = timestamp - lag(timestamp),

30 minutes of idle time starts a new session

session_start = (diff_time >= 1800),

session_start = ifelse(row_number() == 1, 1,

ifelse(is.na(session_start), FALSE,

session_start)),

session_no = cumsum(session_start),

time = strftime(timestamp,"%H:%M:%S"))

In addition, we want to add information about the user who made the request. Here we

specifically want to add

6

whether the user was enrolled as a teacher or student in the course, to be able to

distinguish between student

and teacher clicks. The information about student enrollments can be found in the

enrollment_dim-table.

check who is enrolled as student

enrollment_dim <- read_parquet(paste0(path, "enrollment_dim.snappy.parquet"),

as_tibble = TRUE, col_types = cols(.default = "c")) %>%

select(course_id, user_id, type) %>%

distinct() %>%

group_by(course_id, user_id) %>%

summarize(enrollment_type = paste(type, collapse = ",")) %>%

ungroup()

add enrollment to requests table

requests3 <- requests2 %>%

left_join(enrollment_dim, by = c("user_id", "course_id"))

Write the final requests file

Finally, we remove redundant columns and write the filtered and extended
requests table to a new file.

#remove redundant columns

requests4 <- requests3 %>%

select(timestamp, user_id, course_id, quiz_id,

discussion_id, assignment_id, url,

web_application_controller,

web_application_action, session_id,

quartile:enrollment_type)

write.csv(requests4, paste0(path, "requests_ext.csv"), row.names = FALSE)

The data is now fully prepared and we can focus on extracting the indicators from

the Canvas data. The feature extraction can be done per category, depending on
the type of learning activities available in the course.

Creating session indicators

In this part, we extract indicators to the general log in behavior in the learning
management system. This includes several summary statistics for the different

sessions the users had during the course. A session is defined in the extended log
file (see #Preparing the data). The function below extracts the following session
indicators, and may be customized depending on the researcher’s needs:

More general course indicators:

• time between course publication and first log in-session
• time between course publication and first opening of study guide
• time between course publication and first opening of schedule

• time between course publication and first opening of course information page
• time between last lecture day and last log in-session (last Friday of course

(23.59). Note negative values indicate that the course was not accessed after the
last lecture day.)

Session indicators:
• The number of sessions

• The number of clicks per session

7

• The total session time in minutes

• The average session time in seconds
• The standard deviation of session times in seconds

• The average time between two sessions in seconds
• The standard deviation of the time between two sessions in seconds
• The maximum time between two sessions in seconds

• The average start time of session

All session indicators are calculated over the full course, per week, and for the first
half vs. second half of the course.

getsession_info <- function(requests_df, quartile, year, outfile){

calculate summary statistics per session

sessioninfo <- requests_df %>%

group_by(course_id) %>%

mutate(

start_course = min(timestamp),

end_course = endcourse) %>%

group_by(course_id, user_id, session_no) %>%

summarize(

n_clicks = n(),

start_course = first(start_course),

end_course = first(end_course),

firsttime = (hour(first(timestamp)) + minute(first(timestamp))/60) - 6,

firsttime = ifelse(firsttime < 6, firsttime + 18, firsttime - 6),

change first time of the day to numerical, shifted to start at 6 am

(6:00 = 0, 6:30 = 0.50, 22:00 = 16, 02:00 = 20)

starttime = min(timestamp),

endttime = max(timestamp),

totaltime = endttime - starttime,

totaltime_min = ifelse(!is.na(first(totaltime)), first(totaltime)/60, NA),

interval_time = first(diff_time),

schedule_time = first(timestamp[grepl("schedule", url)]),

courseinfo_time = first(timestamp[grepl("course-information", url)]),

studyguide_time = first(timestamp[web_application_action == "syllabus"])) %>%

ungroup() %>%

at least 2 clicks per session

filter(n_clicks >= 2)

Summarize the session statistics over the full course

session_sum <- sessioninfo %>%

group_by(course_id, user_id) %>%

summarize(

time_to_first_login = as.numeric(first(starttime) -

first(start_course)),

time_to_first_schedule = as.numeric(first(schedule_time) -

first(start_course)),

time_to_first_courseinfo = as.numeric(first(courseinfo_time) -

first(start_course)),

time_to_first_studyguide = as.numeric(first(studyguide_time) -

first(start_course)),

time_to_last_login = as.numeric(last(starttime) -

first(as.POSIXct(end_course))),

n_clicks = sum(n_clicks, na.rm = T),

n_sessions = n(),

totalsessiontime_min = sum(totaltime_min, na.rm = T),

m_sessiontime = as.numeric(mean(totaltime, na.rm = T)),

8

sd_sessiontime = sd(totaltime, na.rm = T),

m_intervaltime = mean(interval_time, na.rm = T),

sd_intervaltime = sd(interval_time, na.rm = T),

max_intervaltime = max(interval_time, na.rm = T),

map all times to one day, to

m_starttime = mean(firsttime, na.rm = T)

) %>%

ungroup()

calculate summary statistics per session per week

session_weekinfo <- requests_df %>%

group_by(course_id, user_id, weeklabel, session_no) %>%

summarize(

n_clicks = n(),

firsttime = (hour(first(timestamp)) + minute(first(timestamp))/60) - 6,

firsttime = ifelse(firsttime < 6, firsttime + 18, firsttime - 6),

starttime = min(timestamp),

endttime = max(timestamp),

totaltime = endttime - starttime,

totaltime_min = ifelse(!is.na(totaltime), totaltime/60, NA),

interval_time = first(diff_time)) %>%

ungroup() %>%

at least 2 clicks per session

filter(n_clicks >= 2)

Summarize the weekly session statistics over the full course

session_sumweek <- session_weekinfo %>%

group_by(course_id, user_id, weeklabel) %>%

summarize(

n_clicks = sum(n_clicks, na.rm = T),

n_sessions = n(),

totalsessiontime_min = sum(totaltime_min, na.rm = T),

m_sessiontime = as.numeric(mean(totaltime, na.rm = T)),

sd_sessiontime = sd(totaltime, na.rm = T),

m_intervaltime = mean(interval_time, na.rm = T),

sd_intervaltime = sd(interval_time, na.rm = T),

max_intervaltime = max(interval_time, na.rm = T),

m_starttime = mean(firsttime, na.rm = T)

) %>%

ungroup()

sum per first vs. second half of the course

session_sumweekhalf <- session_weekinfo %>%

mutate(

half = case_when(

(weeklabel %in% c("w1", "w2", "w3", "w4", "w3a") |

(weeklabel %in% c("w5") & quartile == 4)) ~ "half1",

(weeklabel %in% c("w5", "w6", "w7", "w8", "w9", "w6a")) ~ "half2")) %>%

filter(!is.na(half)) %>%

group_by(course_id, user_id, half) %>%

summarize(

sd_sessiontime = sd(totaltime, na.rm = T),

sd_intervaltime = sd(interval_time, na.rm = T)

) %>%

pivot_wider(id_col = c(course_id, user_id),

names_from = half,

values_from = c(sd_sessiontime, sd_intervaltime))

convert to datawide and merge indicators

session_weekwide <- session_sumweek %>%

pivot_wider(id_col = c(course_id, user_id), names_from = weeklabel,

9

values_from = c(n_clicks, n_sessions, totalsessiontime_min,

m_sessiontime, sd_sessiontime, m_intervaltime,

sd_intervaltime,

max_intervaltime, m_starttime)) %>%

left_join(session_sum) %>%

left_join(session_sumweekhalf) %>%

mutate_at(vars(starts_with("n_"),

starts_with("m_sessiontime"),

starts_with("totalsessiontime_min")),

~replace_na(., 0))

save session indicators to a separate file

write.csv(session_weekwide, paste0(path, outfile),

row.names = FALSE)

session_weekwide

}

Creating assignment indicators

In this part, we extract indicators which relate to the assignments in the learning
management system. For this, information is used from a variety of tables which

store information about assignments in Canvas. Specifically, we use the
assignment_dim and assignment_fact tables, which contain information on

assignment characteristics such as its name, deadline and date published. In
addition, we use the assignment_submission_fact and the
assignment_submission_dim tables, as these contain specific information on

student submissions for a specific assignment.

The function below extracts the following assignment indicators, and may be
customized depending on the researcher’s needs:

• Number of clicks in assignments
• Number of unique submitted assignments

• Number of unique submitted assignments after deadline (submissions submitted
after the due_date)

All assignment indicators are calculated over the full course and per week of the
course.

getassignment_info <- function(requests_df, quartile, year, outfile){

requests4 <- requests_df

load assignments

assign_dim <- read_parquet(paste0(path, "assignment_dim.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N")

assign_fact <- read_parquet(paste0(path, "assignment_fact.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N")

assign_submission_fact <- read_parquet(paste0(path,

"submission_fact.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

10

na_if("\\N")

assign_submission_fact2 <- assign_submission_fact %>%

#remove quizzes & wiki submissions

filter(!is.na(quiz_id) | !is.na(wiki_id)) %>%

mutate_at(c("score"), as.numeric)

assign_submission_dim <- read_parquet(paste0(path,

"submission_dim.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N")

####### transform & merge tables

merge assignment_fact and assignment_dim

assign_fact_dim <- assign_dim %>%

remove unpublished assignments

filter(workflow_state != "unpublished") %>%

left_join(assign_fact,by = c("id" = "assignment_id", "course_id",

"points_possible")) %>%

select(-updated_at, -created_at, -workflow_state)

filter only interaction with assignments from requests

requests_assignment <- requests4 %>%

filter(!is.na(assignment_id)) %>%

mutate(assignment_id = as.numeric(assignment_id),

get canvas_id from URL in requests

assignment_canvas_id = gsub(".*/assignments/","", url),

assignment_canvas_id = as.numeric(gsub("/.*", "",

assignment_canvas_id)))

merge assignment submission dim and fact

assign_subm_fact_dim <- assign_submission_dim %>%

only submissions after 2019

filter(!is.na(submitted_at), submitted_at > "2020") %>%

left_join(assign_submission_fact2, by = c("assignment_id",

"id" = "submission_id",

"user_id")) %>%

rename("submission_id" = "id")

merge submissions with assignment fact dim table

assignment_submission <- assign_subm_fact_dim %>%

select(-canvas_id) %>%

left_join(assign_fact_dim, by = c("assignment_id"= "id","course_id"))

extract courses and add weeklabels

assignment_submission2 <- assignment_submission %>%

mutate(date_submission = as.POSIXlt(submitted_at),

quartile = quartile,

weekno = strftime(date_submission,"%V"),

weeklabel = calculate_weeklabel(weekno, quartile, year))

remove clicks outside timeframe & filter courses

assignment_submission3 <- assignment_submission2 %>%

filter(!is.na(weeklabel), course_id %in% requests4$course_id)

####### Summarize assignment info

assignment CLICKS ONLY (via requests)

sum over full course

assignment_sum <- requests_assignment %>%

group_by(course_id, user_id) %>%

summarize(

n_assignmentclicks = n()

) %>%

11

ungroup()

sum per week

assignment_sumweek <- requests_assignment %>%

group_by(course_id, user_id, weeklabel) %>%

summarize(

n_assignmentclicks = n()

) %>%

ungroup()

assignment SUBMISSION INFO

create one submission entry per (unique) assignment per user per course

assignment_submission4 <- assignment_submission3 %>%

group_by(course_id, assignment_id, user_id) %>%

arrange(as.POSIXct(submitted_at)) %>%

summarize(

firstattempt_date = min(submitted_at),

weeklabel = first(weeklabel), # weeklabel of first attempt

lastattempt_date = last(submitted_at),

late = ifelse(!is.na(due_at), firstattempt_date > first(due_at), 0)

) %>%

ungroup()

summarize assignment indicators for full course

assignment_submission4_sum <- assignment_submission4 %>%

group_by(course_id, user_id) %>%

summarize(

n_assignment = n(),

n_late_assignment = sum(late)

) %>% ungroup()

summarize assignment indicators per week

assignment_submission4_sumweek <- assignment_submission4 %>%

group_by(course_id, user_id, weeklabel) %>%

summarize(

n_assignment = n(),

n_late_assignment = sum(late)

) %>% ungroup()

convert to datawide

assignment_weekwide <- assignment_submission4_sumweek %>%

full_join(assignment_sumweek) %>%

pivot_wider(id_col = c(course_id, user_id), names_from = weeklabel,

values_from = c(n_assignment, n_late_assignment,

n_assignmentclicks)) %>%

left_join(assignment_submission4_sum, by = c("course_id", "user_id")) %>%

left_join(assignment_sum, by = c("course_id", "user_id")) %>%

mutate_at(vars(starts_with("n_")), ~replace_na(., 0))

write.csv(assignment_weekwide, paste0(path, outfile),

row.names = FALSE)

assignment_weekwide

}

Creating quiz indicators

In this part, we extract indicators which relate to the quizzes in the learning
management system. For this, information is used from a variety of tables which
store information about assignments in Canvas. Specifically, we use the quiz_dim

and quiz_fact tables, which contain information on quiz characteristics such as its

12

name, and points possible. In addition, we use the quiz_submission_dim and the

quiz_submission_fact tables, as these contain specific information on student
submissions for a specific quiz.

The function below extracts the following quiz indicators, and may be customized
depending on the researcher’s needs:

• number of clicks in a quiz

• number of unique submitted practice quizzes (quiz_type = practice_quiz/survey
OR time_limit = -1)
• number of unique submitted exam-relevant quizzes (quiz_type =

assignment/graded_survey)
• number of unique quizzes attempted more than once (using quizzes that allowed

more than one attempt)
• mean percentage of time taken exam-relevant quiz (divided by total allowed
time)

• mean time taken practice quiz (min)
• mean percentage of correct quiz answers (for most successful attempts; note

that multiple points may be earned per question)
All quiz indicators are calculated over the full course and per week of the course.

getquiz_info <- function(requests_df, quartile, year, outfile){

requests4 <- requests_df

load quizzes

quiz_dim <- read_parquet(paste0(path, "quiz_dim.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N")

quiz_fact <- read_parquet(paste0(path, "quiz_fact.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N")

quiz_submission_fact <- read_parquet(paste0(path,

"quiz_submission_fact.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N") %>%

mutate_at(c("total_attempts", "score", "quiz_points_possible"), as.numeric)

quiz_submission_dim <- read_parquet(paste0(path,

"quiz_submission_dim.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N")

####### transform & merge tables

merge quiz_fact and quiz_dim

quiz_fact_dim <- quiz_dim %>%

remove unpublished quizzes

filter(workflow_state != "unpublished") %>%

left_join(quiz_fact,by = c("id" = "quiz_id", "course_id","assignment_id",

"points_possible")) %>%

select(-updated_at, -created_at, -due_at, -workflow_state)

filter only interaction with quizzes from requests

requests_quiz <- requests4 %>%

13

filter(!is.na(quiz_id)) %>%

mutate(quiz_id = as.numeric(quiz_id),

get canvas_id from URL in requests

quiz_canvas_id = gsub(".*/quizzes/","", url),

quiz_canvas_id = as.numeric(gsub("/.*", "", quiz_canvas_id)))

merge quiz submission dim and fact

quiz_subm_fact_dim <- quiz_submission_fact %>%

filter(!is.na(date)) %>%

select(-enrollment_term_id, -course_account_id, -assignment_id,

-enrollment_rollup_id, -fudge_points) %>%

right_join(quiz_submission_dim, by = c("quiz_id",

"quiz_submission_id" = "id",

"user_id","submission_id"))

merge submissions with quiz fact dim table

quiz_submission <- quiz_subm_fact_dim %>%

select(-canvas_id) %>%

left_join(quiz_fact_dim, by = c("quiz_id"= "id","course_id"))

extract courses and add weeklabels

quiz_submission2 <- quiz_submission %>%

mutate(date_submission = as.POSIXlt(date),

quartile = quartile,

weekno = strftime(date_submission,"%V"),

weeklabel = calculate_weeklabel(weekno, quartile, year))

remove clicks outside timeframe & filter courses

quiz_submission3 <- quiz_submission2 %>%

filter(!is.na(weeklabel), course_id %in% requests4$course_id)

####### Summarize quiz info

QUIZ CLICKS ONLY (via requests)

sum over full course

quiz_sum <- requests_quiz %>%

group_by(course_id, user_id) %>%

summarize(

n_quizclicks = n()

) %>%

ungroup()

sum per week

quiz_sumweek <- requests_quiz %>%

group_by(course_id, user_id, weeklabel) %>%

summarize(

n_quizclicks = n()

) %>%

ungroup()

ALL other quiz indicators via quiz_submissions

QUIZ SUBMISSION INFO

get max score per quiz

Note: points_possible is often 0, while score > 0

max score can be higher than max points possible (and vice versa)

so we take the highest score of both

quiz_submission_sum <- quiz_submission3 %>%

group_by(course_id, quiz_id) %>%

summarize(

max_quiz_score = max(quiz_points_possible, score)

) %>%

ungroup()

create one submission entry per (unique) quiz per user per course

quiz_submission4 <- quiz_submission3 %>%

14

left_join(quiz_submission_sum) %>%

group_by(course_id, quiz_id, user_id) %>%

arrange(as.POSIXct(date)) %>%

summarize(

firstattempt_date = first(date),

weeklabel = first(weeklabel), # weeklabel of first attempt

lastattempt_date = max(date),

late = ifelse(!is.na(due_at), firstattempt_date > first(due_at), 0),

quiz_type = first(quiz_type),

total_duration = sum(as.numeric(time_taken)),

first_duration = sum(as.numeric(time_taken)),

m_duration = mean(as.numeric(time_taken)/60),

nof_questions = first(question_count),

time_limit = first(as.numeric(time_limit)),

perc_time_taken = ifelse(time_limit > 0, m_duration/time_limit, NA),

allowed_attempts = first(allowed_attempts),

total_attempts = first(total_attempts),

max_score_perc = max(score)/first(max_quiz_score),

mean_score_perc = mean(score)/first(max_quiz_score)

) %>%

ungroup()

summarize quiz indicators for full course

quiz_submission4_sum <- quiz_submission4 %>%

group_by(course_id, user_id) %>%

summarize(

n_practicequiz = sum(quiz_type == "practice_quiz" | time_limit == -1),

n_examquiz = sum(quiz_type %in% c("assignment", "graded_survey")

& time_limit != -1),

n_quiz_retry = sum(total_attempts > 1 & allowed_attempts > 1),

m_examquiz_duration_perc = ifelse(n_examquiz > 0, mean(perc_time_taken,

na.rm = T), NA),

m_practicequiz_duration = mean(m_duration, na.rm = T),

max_quizscore_perc = mean(max_score_perc, na.rm = T)

) %>% ungroup()

summarize quiz indicators per week

quiz_submission4_sumweek <- quiz_submission4 %>%

group_by(course_id, user_id, weeklabel) %>%

summarize(

n_practicequiz = sum(quiz_type == "practice_quiz" | time_limit == -1),

n_examquiz = sum(quiz_type %in% c("assignment", "graded_survey")

& time_limit != -1),

n_quiz_retry = sum(total_attempts > 1 & allowed_attempts > 1),

m_examquiz_duration_perc = ifelse(n_examquiz > 0, mean(perc_time_taken,

na.rm = T), NA),

m_practicequiz_duration = mean(m_duration, na.rm = T),

max_quizscore_perc = mean(max_score_perc, na.rm = T)

)%>% ungroup()

convert to datawide

quiz_weekwide <- quiz_submission4_sumweek %>%

full_join(quiz_sumweek) %>%

pivot_wider(id_col = c(course_id, user_id), names_from = weeklabel,

values_from = c(n_practicequiz, n_examquiz, n_quiz_retry,

m_examquiz_duration_perc, m_practicequiz_duration,

max_quizscore_perc,

n_quizclicks)) %>%

left_join(quiz_submission4_sum, by = c("course_id", "user_id")) %>%

left_join(quiz_sum, by = c("course_id", "user_id")) %>%

15

mutate_at(vars(starts_with("n_")), ~replace_na(., 0))

write.csv(quiz_weekwide, paste0(path, outfile),

row.names = FALSE)

quiz_weekwide

}

Creating discussion forum indicators

In this part, we extract indicators which relate to the discussion forum in the
learning management system. For this, information is used from a variety of tables

which store information about discussions in Canvas. Specifically, we use the
discussion_topic_dim and discussion_topic_fact tables, which contain information

on the discussion topics. In addition, we use the discussion_entry_fact table, as
this table contains specific information on student replies to a specific discussion
topic.

The function below extracts the following discussion forum indicators, and may be

customized depending on the researcher’s needs:

• Number of forum clicks

• Number of announcement clicks
• Number of forum topics posts

• Number of forum reply posts

All discussion forum indicators are calculated over the full course and per week of
the course.

getforum_info <- function(requests_df, quartile, year, outfile){

requests4 <- requests_df

load discussion tables

discussion_entry_fact <- read_parquet(paste0(path,

"discussion_entry_fact.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N") %>%

filter(!is.na(course_id))

discussion_topic_fact <- read_parquet(paste0(path,

"discussion_topic_fact.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N") %>%

remove discussion in groups

filter(!is.na(course_id))

discussion_topic_dim <- read_parquet(paste0(path,

"discussion_topic_dim.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N") %>%

filter(!is.na(course_id))

####### transform & merge tables

merge discussion_topic dim & fact

disc_topics <- discussion_topic_dim %>%

left_join(discussion_topic_fact, by = c("id" = "discussion_topic_id",

"course_id", "group_id"))

16

filter courses and add weeklabels

disc_topics2 <- disc_topics %>%

filter(!is.na(posted_at)) %>%

mutate(date_submission = as.POSIXlt(posted_at),

quartile = quartile,

weekno = strftime(date_submission,"%V"),

weeklabel = calculate_weeklabel(weekno, quartile, year))

remove clicks outside timeframe & filter courses

disc_topics3 <- disc_topics2 %>%

filter(!is.na(weeklabel), course_id %in% requests4$course_id)

#merge discussion entry fact

disc_entries <- disc_topics %>%

select(-user_id) %>%

right_join(discussion_entry_fact, by = c("id" = "topic_id", "course_id"))

filter courses and add weeklabels

disc_entries2 <- disc_entries %>%

filter(!is.na(posted_at)) %>%

mutate(date_submission = as.POSIXlt(posted_at),

quartile = quartile,

weekno = strftime(date_submission,"%V"),

weeklabel = calculate_weeklabel(weekno, quartile, year))

remove clicks outside timeframe & filter courses

disc_entries3 <- disc_entries2 %>%

filter(!is.na(weeklabel), course_id %in% requests4$course_id)

merge with discussion topic dim to get discussion type

requests_discussions <- requests4 %>%

filter(!is.na(discussion_id)) %>%

left_join(discussion_topic_dim, by = c("discussion_id" = "id", "course_id"))

####### Summarize discussion info

Discussion CLICKS ONLY (via requests)

sum over full course

disc_sum <- requests_discussions %>%

group_by(course_id, user_id) %>%

summarize(

n_forumclicks = sum(is.na(type)),

n_announcementclicks = sum(type == "Announcement")

) %>%

ungroup()

sum per week

disc_sumweek <- requests_discussions %>%

group_by(course_id, user_id, weeklabel) %>%

summarize(

n_forumclicks = sum(is.na(type)),

n_announcementclicks = sum(type == "Announcement")

) %>%

ungroup()

ALL other discussion indicators via discussion_submissions

post in topics

topic_sum <- disc_topics3 %>%

group_by(course_id, user_id) %>%

summarize(

n_forumtopic_post = n_distinct(id)

) %>% ungroup()

summarize assignment indicators per week

topic_sumweek <- disc_topics3 %>%

group_by(course_id, user_id, weeklabel) %>%

17

summarize(

n_forumtopic_post = n_distinct(id)

) %>% ungroup()

post in topics

entry_sum <- disc_entries3 %>%

group_by(course_id, user_id) %>%

summarize(

n_forumreply_post = n_distinct(id)

) %>% ungroup()

summarize assignment indicators per week

entry_sumweek <- disc_entries3 %>%

group_by(course_id, user_id, weeklabel) %>%

summarize(

n_forumreply_post = n_distinct(id)

) %>% ungroup()

convert to datawide

disc_weekwide <- topic_sumweek %>%

full_join(entry_sumweek) %>%

full_join(disc_sumweek) %>%

pivot_wider(id_col = c(course_id, user_id), names_from = weeklabel,

values_from = c(n_forumreply_post, n_forumtopic_post,

n_forumclicks, n_announcementclicks)) %>%

left_join(topic_sum, by = c("course_id", "user_id")) %>%

left_join(entry_sum, by = c("course_id", "user_id")) %>%

left_join(disc_sum, by = c("course_id", "user_id")) %>%

mutate_at(vars(starts_with("n_")), ~replace_na(., 0)) %>%

filter(!is.na(user_id))

write.csv(disc_weekwide, paste0(path, outfile),

row.names = FALSE)

disc_weekwide

}

Creating file and video indicators

In this part, we extract indicators which relate to the files in the learning

management system. For this, information is used from a a single table which
includes specific information on files in Canvas: file_dim. Note that the code
discusses all file types, including videos, pictures and presentations. In case one

wants to exclude any file type for generating more specific indicators, other filter
operations can be applied to the requests_files2 table specifying which file types

to include or exclude.

The function below extracts the following file indicators, and may be customized

depending on the researcher’s needs:

• number of clicks on files
• number of unique file accessed (including inline views & downloads)

• number of unique file downloads (via ‘download’ in url requests)
• number of clicks on video files (mediafiles directly uploaded on canvas with mp4
type of extension (file_type in file_dim))

• number of unique accessed video files

• number of clicks on livestreamed videos (media accessed via bigbluebutton,
Canvas conferences, or panopto)
• number of unique accessed livestreamed videos (canvas conferences)

18

All file indicators are calculated over the full course and per week of the course.

getfiles_info <- function(requests_df, quartile, year, outfile){

requests4 <- requests_df

load files

file_dim <- read_parquet(paste0(path, "file_dim.snappy.parquet"),

as_tibble = TRUE,

col_types = cols(.default = "c")) %>%

na_if("\\N")

####### transform & merge tables

file_dim2 <- file_dim %>%

mutate(course_id = as.numeric(gsub("ˆ7542", "", course_id))) %>%

filter(course_id %in% requests4$course_id) %>%

mutate(file_type = gsub("\\/.*", "", content_type),

file_type = ifelse(file_type == "binary"| is.na(file_type),

"unknown",

file_type),

file_id = as.numeric(gsub("ˆ7542", "", id)))

requests_files <- requests4 %>%

filter(grepl("files/", url)) %>%

mutate(file_id = gsub(".*/files/", "", url),

file_id = as.numeric(gsub("/.*|\\?.*", "", file_id))) %>%

filter(!is.na(file_id))

#merge with file_dim for file_types

requests_files2 <- requests_files %>%

left_join(select(file_dim2, file_id, file_type, display_name))

roughly file types include: video (.mp4), text (.docx, csv),

application (pdf, pptx, zip), image (jpg, png), unknown (.sav, .R, .do, .dta)

extract video views in canvas conferences

requests_conferences <- requests4 %>%

filter(grepl("conferences/|panopto", url)) %>%

mutate(conference_id = gsub(".*/conferences/", "", url),

conference_id = as.numeric(gsub("/.*|\\?.*", "", conference_id)))

####### Summarize file info

get unique access

create one entry per (unique) file per user per course

files2 <- requests_files2 %>%

group_by(course_id, file_id, user_id) %>%

arrange(as.POSIXct(timestamp)) %>%

summarize(

n_fileclicks = n(),

weeklabel = first(weeklabel), # weeklabel of first access

downloaded = sum(grepl("download", url)) > 0 ,

video = first(file_type) == "video"

) %>%

ungroup()

summarize files indicators for full course

files_sum <- files2 %>%

group_by(course_id, user_id) %>%

summarize(

n_fileclicks = sum(n_fileclicks, na.rm = T),

n_fileaccess = n(),

n_video = sum(video),

n_videoclicks = sum(n_fileclicks[video], na.rm = T),

n_filedownload = sum(downloaded)

19

) %>% ungroup()

summarize assignment indicators per week

files_sumweek <- files2 %>%

group_by(course_id, user_id, weeklabel) %>%

summarize(

n_fileclicks = sum(n_fileclicks, na.rm = T),

n_fileaccess = n(),

n_videofile = sum(video),

n_videofileclicks = sum(n_fileclicks[video], na.rm = T),

n_filedownload = sum(downloaded)

) %>% ungroup()

get unique access

create one entry per (unique) video per user per course

conferences2 <- requests_conferences %>%

group_by(course_id, url, user_id) %>%

arrange(as.POSIXct(timestamp)) %>%

summarize(

n_confclicks = n(),

weeklabel = first(weeklabel), # weeklabel of first access

) %>%

ungroup()

summarize video indicators for full course

video_sum <- conferences2 %>%

group_by(course_id, user_id) %>%

summarize(

n_videoclicks_total = sum(n_confclicks, na.rm = T),

n_video_total = n()

) %>% ungroup()

summarize video indicators per week

video_sumweek <- conferences2 %>%

group_by(course_id, user_id, weeklabel) %>%

summarize(

n_videoclicks = sum(n_confclicks, na.rm = T),

n_video = n()

) %>% ungroup()

convert to datawide

files_weekwide <- files_sumweek %>%

full_join(video_sumweek) %>%

pivot_wider(id_col = c(course_id, user_id), names_from = weeklabel,

values_from = c(n_fileclicks, n_fileaccess,

n_filedownload, n_videofileclicks, n_videofile,

n_videoclicks, n_video)) %>%

full_join(files_sum) %>%

full_join(video_sum) %>%

mutate_at(vars(starts_with("n_")), ~replace_na(., 0))

write.csv(files_weekwide, paste0(path, outfile),

row.names = FALSE)

files_weekwide

}

Merging all Canvas indicators
With the code below, you can run all separate functions described above to extract

the Canvas indicators per category.

session_weekwide <- getsession_info(requests4, quartile, year,

"session_indicators.csv")

20

assignment_weekwide <- getassignment_info(requests4, quartile, year,

"assignment_indicators.csv")

quiz_weekwide <- getquiz_info(requests4, quartile, year,

"quiz_indicators.csv")

disc_weekwide <- getforum_info(requests4, quartile, year,

"discussion_indicators.csv")

files_weekwide <- getfiles_info(requests4, quartile, year,

"file_indicators.csv")

Thereafter, you can merge all Canvas indicators into one large data-wide csv file.
This file contains one row per student per course, for all indicators.

merge all canvas indicators

canvasall <- session_weekwide %>%

left_join(assignment_weekwide, by = c("course_id", "user_id")) %>%

left_join(quiz_weekwide, by = c("course_id", "user_id")) %>%

left_join(disc_weekwide, by = c("course_id", "user_id")) %>%

left_join(files_weekwide, by = c("course_id", "user_id"))

write.csv(canvasall, paste0(path, "CanvasIndicators.csv"))

This csv file can now be combined with additional data sources, such as grades or

survey data and can be used for your further analyses.

