UNIVERSITY OF TWENTE.

Symmetry enables data-efficient velocity estimation Julian Suk, Christoph Brune, Jelmer M. Wolterink

Mathematics of Imaging & AI, Department of Applied Mathematics, University of Twente, Enschede, The Netherlands Technical Medical Center, University of Twente, Enschede, The Netherlands

Introduction	Example results
 Hemodynamic velocity fields could be useful in diagnosis, prognosis and treatment planning Medical imaging, segmentation and computational fluid dynamics (CFD) to estimate velocity 	

- CFD is accurate but costly
- Data-driven surrogate methods that learn to infer velocity from artery shape
- Offline training on CFD-generated dataset, fast online inference for new artery
- [Problem] clincal datasets are usually small
- Make use of roto-translational (SE(3)) symmetry as inductive bias in graph neural network (GNN)
- GNN can focus on shape-intrinsic properties instead of orientation

Neural Network Architecture 100 copy & cat action O(3) tensor prod O(3) tensor prod pro SEGNN layer SEGNN layer SEGNN layer SEGNN layer SEGNN layer $\mathcal{V}^{1}\mathcal{V}^{2}$ SEGNN laye SEGNN laye SEGNN laye pood extend extend 30 tensor [%] mean eature ω 0(3) 14 $\gamma^2 \gamma^1$ $\gamma^0 \gamma^1$ $\mathcal{V}^1 \mathcal{V}^0$ 9 7 \mathcal{V}^0 \mathcal{V}^2

Data efficiency

Conclusion

- Steerable E(3)-equivariant graph neural network (SEGNN) [1]
- Three-scale pooling scheme [2]
- Predicts a discrete velocity field mapped to the vertices of the volumetric input mesh
- End-to-end equivariant to SE(3) transforms (roto-translations)

- We demonstrate how SEGNN can accurately estimate blood velocity in unseen arteries
- We achieve speed-up from 15 min (CFD) to 24.5 s (SEGNN)
- SEGNN is able to learn from a small dataset and makes data augmentation obsolete
- Physics-informed extensions are natural
- We are currently working on pulsatile flow and changing boundary conditions

Contact

[1] Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E.J., Welling, M.: Geo- metric and physical quantities improve E(3) equivariant message passing. In: Pro- ceedings of the 10th International Conference on Learning Representations (2022)
[2] Suk, J., de Haan, P., Lippe, P., Brune, C., Wolterink, J.M.: Mesh convolutional neural networks for wall shear stress estimation in 3D artery models. In: MICCAI Workshop on Statistical Atlases and Computational Models of the Heart (2022)

References

j.m.suk@utwente.nl @sukjulian Papers github.com/sukjulian

