Background

- Nurses experience **peaks of workload**, due to a high variability in bed occupancy.
- We optimize the Master Surgical Schedule (MSS) while accounting for **downstream bed occupancy** The MSS is cyclic and assigns specialties to a day and
- operating room (OR).

Objective

To find the optimal Master Surgical Schedule while minimizing variability of nursing ward occupancy.

Process

 Close collaboration with practitioners to ensure practical implementability.

(1) Discuss current best MSS

Figure 1: Graphical depiction of research process.

Results

Fewer nurses, more levelled workload

- Optimizing the MSS results in saving one nurse.
- Besides, the occupancy is more flat, which results in less peaks in workload.

Conclusions

- It requires a thorough collaboration between researchers and practitioners to come up with the full set of constraints.

Master surgery scheduling with nursing ward constraints

Hayo Bos^{1,2} • Richard J. Boucherie² • Erwin W. Hans² • Gréanne Leeftink² ¹Diakonessenhuis, Utrecht ²CHOIR, University of Twente

• Our model provides MSSs that make better use of available resources, by saving four beds which means one nurse.

Diakonessenhuis

(3) Master Surgery Scheduling Problem as Stochastic Knapsack with **Periodic Scheduled Arrivals (SKPSA)**

- MSS as cyclic schedule generating patient a random number of arrival to nursing wards.
- The patients arrive to the nursing ward, the knapsack, and complete their holding time, their length of stay (LOS).

Figure 3: Graphical depiction of the SKPSA.

- (4) Approximation by Distributionally Robust Optimization Distributionally Robust Optimization (DRO) optimizes with respect to the worst case distribution in a ball of distributions around a reference distribution.
- We apply this to the uncertain LOS and patient outflow per session. We reformulate the SKPSA as Mixed Integer Linear Program using tractability results from DRO.

 $\min_{\mathbf{x}, \mathbf{y}_1, \dots, \mathbf{y}_\ell} \sup_{\mathbf{Q}_\ell \in \mathcal{P}_\ell} \sum_{\ell=1}^{-} \mathbb{E}_{\boldsymbol{\xi}_\ell \sim \mathbf{Q}_\ell} \left[\mathbf{y}_\ell^{\mathsf{T}} \mathbf{1}_T \right]$ $\mathbf{x} \in \mathcal{X}$.

Figure 5: Ball of distributions around a reference distribution.

Figure 6: Reformulated SKPSA as MILP.

By simulation we show that we can save up to four beds

- Results obtained by Monte-Carlo Simulation.
- The graph shows lower bed usage and flattened bed occupancy.

s.t. $p_o\left(\mathbf{c}_{\ell}-\mathbf{G}_{\ell}(\mathbf{x})(\mathbf{b}_{\ell}\odot\boldsymbol{\xi}_{\ell})\right)\leq\mathbf{y}_{\ell}, \qquad \ell\in\mathcal{L},$ $p_u\left(\mathbf{G}_\ell(\mathbf{x})(\mathbf{b}_\ell\odot\boldsymbol{\xi}_\ell)-\mathbf{c}_\ell
ight)\leq \mathbf{y}_\ell,\qquad \ell\in\mathcal{L},$