Sustainable plastics based on renewable raw materials

January 20th 2022

Karin Molenveld (Karin.Molenveld@wur.nl)

Introduction: Sustainable plastics

Are plastics sustainable?

- Plastics were developed to replace scarce materials like ivory
- Initially plastics were based on renewable resources
- Plastics have an excellent price/performance ratio

What are current issues?

- Most plastics are produced from finite fossil feedstock and associated with climate change
- Plastics are causing pollution issues (microplastics, plastic soup,...)
- Recycling of plastics is challenging

Sustainable Plastics Technology @ WFBR

- Expertise group Sustainable Plastics Technology
- Wageningen Food & Biobased Research
- Part of Wageningen University and research
- Topics:

Biobased plastics Plastics recycling

Biodegradation of plastics

Goals vs reality

THE NEW PLASTICS ECONOMY		
CREATE AN EFFECTIVE AFTER-USE PLASTICS ECONOMY		
RECYCLING MARKALIN ANNOVAD RECONCELSE GALITY	OTHER MATERIAL STREAMS	
PESIGN & PRODUCTION	195	
	Paday Research	
3 DECOUPLE PLASTICS FROM FOSSIL FEEDSTOCKS	2 DRASTICALLY REDUCE THE LEAKAGE OF PLASTICS INTO NATURAL SYSTEMS & OTHER	
WALLO ECONOME FORM, ELLEN MALATINI E FORMELTA NE ACTUALIZZA DE NOVANT. 1991 - DE NOVANT ANTA DE NOVANT DE NOVANT 1991 - DE NOVANT DE N		
1 answer operation 2 There exists on a boardisms and answer of the two Particle Communications and the barrier menutarity board existent Resistance and and board existent Resistance and and		

- 1. After use plastics economy
- 2. Reduce leakage into the environment
- 3. Decouple from fossil feedstocks

We need to move to <u>non-persistent</u> plastics based on <u>alternative carbon</u> <u>sources with improved recycling</u> <u>opportunities.</u>

~ 10% recycled plastics

~ 1% biobased plastics

~90% virgin fossil plastics

?

biobased

Biobased Plastics ≠ Biodegradable plastics

Fossil based

Development approaches

- 1. Production of drop-inn biobased plastics
 - Direct production from biomass
 - Adding biobased feedstock to the cracker
- 2. Production of new biobased plastics
 - Direct production of biomass

Production of biobased PE from biomass

Braskem: PE from sugar cane, 200kton facility in Brasil

- Performance: Identical to fossil based PE
- Feedstock availability: Sugars are widely available and in the future lignocellulosic feedstock can be used
- Production efficiency: 1 ton bioPE requires 3.2 ton sugar

Production of certified biobased PE

Adding bionafta as a co-feed to current crackers

- Performance: Identical to fossil based PE
- Feedstock availability: Limited availability of (waste) fats and oils
- Production efficiency: 1 ton bionafta requires 1.1 ton vegetable oil

Feedstock	Estimated global availability in million tons
Tall oil	1.8
Waste cooking oil	5.1
Waste fats	7.5 (tallow)
Castor oil	0.74

Production of PLA (novel biobased polymer)

Natureworks and Total Corbion: PLA from corn or sugar cane

- Performance: Good properties but different from fossil-based
- Feedstock availability: Sugars are widely available and in the future lignocellulosic feedstock can be used
- Production efficiency: 1 ton PLA requires 1.4 ton sugar (90% carbon efficiency

Polylactic acid (PLA)

- Most mature biobased plastic, 2 main producers ~ 300kton annually
- Various end-of-life options (chemical, mechanical, organic recycling)
- Good environmental footprint and affordable
- Properties in the range of PET and PS (stiff, transparent)
- Various grades for different production techniques

Application development

Coffee cups

Expandable bead foam

Plant pots

Example extrusion foaming

- Focus; increasing the melt strength of PLA
 - Polymer blends
 - Additives
 - Introducing crystallinity (physical crosslinks)

White: PLLA chains Blue: Starch shaped PDLA

Effect on melt strength as measured via haul-off

Red line is PLA reference and addition of various 5% star shaped PDLA types

End-of-life

- In material and product development end-of-life needs to be considered
- How do materials fit in current <u>and future</u> waste management systems?
- Develop materials that have more opportunities at end-of-life
 - Mechanical, Chemical, Organic recycling
 - Polyesters vs Polyolefins
- Focus on biobased polyesters that offer more opportunities at EOL as compared to current fossil based plastics as this adds to their sustainability

Concluding remarks

- Developing a sustainable plastics economy is extremely challenging
- Various strategies can be envisaged and important factors are:
 - Feedstock availability and feedstock selection
 - Efficient conversion routes
 - Product development and redesign
 - Considering end-of-life is essential

Thank you

Karin.Molenveld@wur.nl

