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Background Objectives
e Search for alternatives to fossil-based resources. e To study the reaction mechanism of butyric acid
e Conversion of biomass derived long-chain fatty acids to value- hydrodeoxygenation (HDO) on 3-Mo2C (101) surface.
added chemicals. e To elucidate structure-activity relationships.
e Heterogeneous catalyst for biomass conversion: easily e To identify the descriptors responsible for governing the activity
separable, recyclable, and robust.? of B-Mo2C, and ways for further optimization of activity.
e Transition metal carbides (TMCs) as viable alternatives to
platinum group metals (PGMs).?2 Methods
* Intrinsic descriptors of reactivity.’ All the DFT calculates are performed using the VASP.5.4.4, and
— | VASP.6.2.1 packages. CI-NEB method was used for identification
Noble metal catalysts Vs Transition metal carbides of transition states. The kinetic-energy cutoff: 500 eV, SCF energy
Scarce Abundant convergence threshold: 10e-5 eV, and force convergence:
Expensive Relatively cheaper geometry optimization (0.05 eV/A), NEB (0.10 eV/A)], T-centered
>/N Poisoning Resists S/N Poisoning k-mesh of size 6*6*6 for optimizing bulk, and 2*2*1 for

Figure 1. Differences between noble metal catalysts and transition metal catalysts. optimizing the supercell. MKMCXX package was used for
performing microkinetic modeling, based on DFT data.
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' Figure 3. (A) The DRC coefficients for all the elementary reaction steps as a
function of temperature; (B) surface coverage as a function of temperature; (C)
INT8 (C,H,**+H*) TS9 INT10 (C,H,*+H*) Butanol (C4H,¢*) local geometries of the rate-determining step identified by DRC analysis; (D) side
and top view of the transition state of the RDS with active sites for heteroatom
doping highlighted (Green: Mo active site for metal doping, Purple: C active site
for nonmetal doping).
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Figure 2. Reaction energy profile for the formation of butanal, butanol, 2-butene and " Mdbmdtiting Y pomatilling
butane from butyric acid over the (101) surface of B-Mo2C. The local geometries of Figure 4. Linear-scaling relationships of potential descriptors of
intermediates and transitions states of the key reaction steps are highlighted on top. reactivity with reaction barriers required in the RDS.
Conclusions

e The reaction pathway for HDO of butyric acid to butane on B-Mo2C (101) has been identified using DFT modeling.
e Butanol dissociation is the rate-determining step, as verified by DFT & MKM.
e Dopants’ d-band filling and dopants’ radius are the key descriptors governing the activity of Mo2C catalyst.
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