

Building energy-efficiency adoption

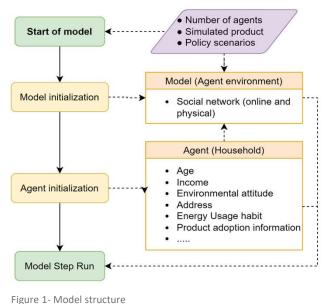
Eindhoven University of Technology

Energy efficiency adoption decision

Investigating adoption influencing factors

- Three aspects of social influences (positive vs negative comments, physical social network vs online social network, peer effect vs social norm) are investigated;
- People make limited effort in energy efficiency adoption;
- Social influences have more impact on low-cost (purchase cost) than high-cost products;
- Peers (neighbors, friends, and family member) have stronger impact than general public.

Class		Class 1		Class 2		Class 3	
Probability		45.9%		32.0%		22.1%	
Constant		-5.712***	5.712	-0.361***	0.361	-1.082***	1.082
Capacity	150L & 5.5 kg	0.263	0.923	0.576***	-0.576	0.327	-0.534
	250L & 7kg	0.923**	-1.846	-0.103	0	-0.534***	1.068
	400L & 10 kg		0.923		0.576		-0.534
Price	4,000	-0.588***	0.335	-0.588***	0.335	0.587*	-0.058
	5,500	-0.253***	0.506	-0.253***	0.506	0.529***	-1.058
	7,000		-0.841		-0.841		1.116
Energy cost	167	-0.495		0.185	0.541	-0.616**	0.132
	223	0.007		0.541***	-1.082	-0.484**	0.968
	279				0.541		-1.100
Subsidy	None	0.923*	-1.39	0.197		-1.059***	1.059
	1%	-0.467*	0.934	-0.126		137	0
	3%		0.456				-1.059
Energy label	1	-0.289	-0.749	-0.552***	0.552	0.028	-0.264
	2	-0.749**	1.498	-0.004	0	-0.264*	0.528
	3		-0.749		-0.552		-0.264
Recommendation	None	0.119		-0.099			
	Family or friends	-0.115		-0.254			
	Club, community, or co- workers	-0.583		0.148			
	People met online						
Negative comment	None	-0.875***	2.739	-0.667***	0.335		
	Family, friends, or other people you know	1.864**	-3.728	-0.332***	0.664		
	Internet or people met						


Table 1- Latent class model for appliance adoption

Note: *** indicates significance at the 1% level. ** indicates significance at the 5% level. indicates significance at the 10% level.

Start of steps

Agent-based simulation

Simulating interventions for encouraging energy efficiency adoption

Environmental attitudes

Income
Energy usage habit
Environmental attitudes

Monte Carlo simulation

Get product preference

Product pool and product attributes

End of steps

End of steps

Figure 2- Agent decision process

UNIVERSITY OF TWENTE.

Contact info: Hua Du (h.du@tue.nl)