

Fair Balancing of COVID-19 Patients over Hospitals

Fair Balancing of COVID-19 Patient

- COVID-19 patients get infected and demand care
- Need to be allocated to hospitals, preferably within
- Hospital differences
 - Occupancy at COVID-19 ward and ICU
 - Capacity at COVID-19 ward and ICU
 - Length of stay and transfer probabilities ward
- How to fairly allocate COVID-19 patients to hospit
- What to do if patients don't fit in region?

This figure has been designed using assets from Freepik.com

Modeling Hospital COVID-19 Occur

- System of two $M_t/G/\infty$ queues [1]
- Prediction arrival rate based on infections
- Estimated Length of Stay & transfer probabilities wa
- Forecast (maximum) occupancy coming days by sin

Stef Baas, Sander Dijkstra, Aleida Braaksma, Richard Boucherie

^a Center of Healthcare Operations Improvement and Research - University of Twente, The Netherlands

ts	Dynamic Intra-Regional Al
region	• Decision is fraction $\theta_h(t)$ of regional ted to hospital h at time s
1.1081011	• Preferable to admit COVID-19 patient
	• Maximal scaling of regional arrival capacity n_h^* is not exceeded by occularger than safety levels α_h for hospit
and ICU tals?	$\tilde{\theta}_h(s) = \max\{\theta : \mathbb{P}_{\theta,h} \left[\max_{u \in [s,s+t]} N_{hW}(u) \le r \right]$
	$\mathbb{P}_{\theta,h} \left[\max_{u \in [s,s+t]} N_{hI}(u) \le n_{hI}^* \right]$
U	• Scaling $\tilde{\theta}_h(s)$ found by stochastic applications queueing model (parallel composition)
	• Normalization gives allocated fraction
	• Simulation study, 8 November 2020 - pitals (LUMC, Haga, GHZ, region N.
	• Comparison fixed allocation with dy average and variability in amount of
	15 • • • • • • •
pancy	
	0 - LUMC Haga
vard and ICU nulation	• Similar results for ward, also for the s
ward	• COVID-19 capacity can be scaled up
ICU -> Ward	• Urgent regular care arrives randomly.
	References
ICU	 [1] S. Baas, S. Dijkstra, A. Braaksma, et al., "Real-time for [2] H. Robbins and S. Monro, "A stochastic approximation [3] W. Klein Haneveld, M. Van der Vlerk, and W. Romeijn

location Method

COVID-19 patients admit-

nt inside respective region

rate such that probability cupancy N_h in [s, s+t] is ital h:

$$\hat{\mathbf{h}}_{hW}^* \mid \mathbf{L}_h(s) = \boldsymbol{\ell}_h \right] \ge \alpha_{hW},$$
$$\hat{\mathbf{h}}_I \mid \mathbf{L}_h(s) = \boldsymbol{\ell}_h \right] \ge \alpha_{hI} \}$$

proximation [2] with simuputation for each hospital).

on: $\theta_h(s) = \tilde{\theta}_h(s) / \sum_h \tilde{\theta}_h(s)$

7 January 2021, three hos-(AZ West)

vnamic allocation: smaller overbeds per day

Inter-Regional Reallocation Method

- Decision is number of ward and ICU patients transferred from one region to another at each decision epoch
- Unwanted but necessary if patients don't fit in region
- Nonlinear Stochastic integer program [3] resolving current regional bed shortages while
 - balancing current and future relative remaining bed surpluses over regions
 - minimizing cost of future reallocations
- gions, two clusters of two nearby regions

• Comparable results for quantile-based nonlinear program

or down, how and when to scale regular care up or down to facilitate COVID-19 care in a fair way? , can we use queueing model to forecast occupancy urgent regular care and use it for fair balancing?

m brecasting of COVID-19 bed occupancy in wards and intensive care units," Health Care Management Science, vol. 24, pp. 402–419, 2021. method," The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400-407, 1951 ders, Stochastic programming: Modeling decision problems under uncertainty. Springer Nature, 2019.

• Sample average approximation with scenarios queueing model

• Simulation study, 8 November 2020 - 7 January 2021, four re-

• Comparison heuristic sending to region with free beds with program: more reallocation within clusters with same total amount