Motivating students by giving responsibility during lab classes

- Laboratory of Food Chemistry (FCH)
- Julia Diederen

This presentation is based on the course Food Chemistry

- 2nd year Bachelor Food Technology
- This year: ~190 students
- 2 groups: ~95 students per group
- Lectures / knowledge clips
- Exercises (digital)
- Calculation cases (digital)
- Lab classes

General learning objectives for lab classes

- 8 groups of learning objectives (Kirschner and Meester 1988)
- Formulate hypotheses
- Solve problems
- Use knowledge and skills in unfamiliar situations
- Design simple experiments to test hypotheses
- Use laboratory skills in performing experiments
- Interpret experimental data
- Describe clearly the experiment
- Remember the idea of an experiment over a long period of time

Challenges in many laboratory classes - I

- I: Students having cognitive overload
 - It is often the instructional format which causes an overload
 - \rightarrow Make instructions more implicit

37. Reducing sugars content (Nelson-Somogyi method)

Introduction

The carbonyl group of a sugar monomer (in open ring structure) can be oxidized by Cu²⁺ ions. In other words: the sugar molecule reduces the Cu²⁺ ion. Therefore such a sugar is a named a "**reducing sugar**". All monosaccharides are reducing sugars, however disaccharides, oligosaccharides and polysaccharides also have **one reducing terminal sugar residue**. Sucrose is **not** a reducing sugar, because the monomers (glucose and fructose) are linked in a 1-2 linkage, with both sugars in closed ring conformation

The reaction can be used to determine reducing sugars in all kind of products. The Cu₂O (solid) has a red-brown colour and can react further with arsenomolybdate reagent to soluble molybdate blue, that can be quantified in a spectrophotometer.

Method

2.

4

Decide whether it is nec

1. Using the 150 μg/r

in 20 ml reaction t

diluted). Pipet 450

Prepare a "copper

Make a series of di

tube	ml	2.
1		3.
2		
3		4
4		
5		
6		

- diluted). Pip
- in 20 ml reaction tubes.

Pipet 450 µl of each glucose concentration into a new reaction tube.

- Make a series of dilutions of your sample (for instance 10, 100, 1000 and 10.000 times diluted). Pipet 450 μl of each dilution into a new reaction tube.
- Prepare a "copper reagent", by mixing 4 volume parts of stock solution "Nelson A1" with 1 volume part of stock solution "Nelson A2". Prepare only the amount you need for this experiment.
- For each test tube add 450 µl copper reagent with a pipette and mix well.
- $\frac{1}{P_{ipet} 450 \, \mu l \, of \, ea}} 6$. Cover the tubes with aluminum foil and heat during 10 minutes in a 100°C water bath.
 - Let the samples cool down to room temperature. Placing them in cold tap water will help.
- with 1 volume part 8. Prepare a "arseno-molybdate reagent" (), by mixing 1 volume part of stock solution
- 5. For each test tube "Nelson A3" with 2 volume parts of stock solution "Nelson A4". Prepare only the
- Cover the tubes with aluminum foil and heat during 10 minutes in a 100°C water bath.
- Let the samples cool down to room temperature. Placing them in cold tap water will help.
- Prepare a "arseno-molybdate reagent" (
), by mixing 1 volume part of stock solution "Nelson A3" with 2 volume parts of stock solution "Nelson A4". Prepare only the amount you need for this experiment.
- 9. Add 450 µl arsenic molybdate reagent (□) to each tube.
- Add 3 ml demi water to each tube. If some precipitate is formed, then centrifuge for 5 minutes in a table top centrifuge at maximum speed.

Explicit information in lab manual

3. Get a 5 ml pipette and a number of pipette tips (present on your lab bench), add 1.6 ml 2.5% phenol solution (stored in the safety cabin next to the fumehood; the bottle looks like this...; take care: phenol is toxic, so work in fumehood, wear gloves and put on safety glasses; phenol waste is collected in the phenol waste container, located in the cabin under the fumehood) to each tube by setting the volume to 1.6 ml using the centrally located rings, placing a tip on the discharge end of the pipette, The compounds formed in step 5 (furfural and hydroxymethylfurfural) will react with phenol to a yellow-orange coloured complex.

Provide implicit information

6

Solution: WebLabManual

Challenges in many laboratory classes - II

- I: Students having cognitive overload
 - It is often the instructional format which causes an overload
- II: Students are not motivated
 - Students do not feel responsible

We have learned that during lab classes ...

... students who are responsible for their own planning and their own choices,

- are more motivated
- are more aware of what they are doing
- Are more aware of why they are doing this

Lab classes start with a list of assignments Assignments give students the **goals** of the experiments

- For each assignment student choose themselves which method they need to perform
- Students make their own work-flow in ExperD
- Student plan the experiments themselves
- Each student write his/her own report

Example of Assignments

Assignments

All the outcomes of these assignments should be described and explained in your final report.

1	Demonstrate the presence of starch in barley.	
2	Isolate total starch from barley and determine the yield.	
3	Isolate (some) protein from barley and determine the yield and the recovery.	
4	Determine the size, the shape and the location of the hilum of the isolated barley starch	
	granules.	
5	Compare the shape of the isolated barley starch granules with those of potato starch. Make drawings in your lab journal.	
6	Determine the gelatinization temperature of barley starch, using different methods.	
7	Compare the gelatinization temperature of barley starch with that of potato starch. (Contact	
<u> </u>	the group working with potato starch).	
8	Determine the effect of heating on the viscosity of suspended ground barley and suspended	
	ground malt. Explain the differences.	
	Demonstrate the difference of two starch hydrolysis mechanisms. Determine the degree of	
9	hydrolysis and determine which part of the total carbohydrate is polysaccharide after	
	hydrolysis.	
10	Simulate the mashing process of barley and make a "protein extract" and a "carbohydrate	
	extract" of the samples.	
	Find out whether the mashing process has gone well by determining how much	
11	polysaccharides and now much low molecular weight carbonydrates are present in the	
	Carbonydrate extracts". Explain your results.	
12	Find out whether the mashing process has gone well by investigating with two different	
	the choice of your methods and explain your results.	
<u> </u>	Determine the protein content of the barloy, the malt, the purified starsh and the isolated	
13	protein. Where possible, compare the results with values from literature	
	Determine the lipid content of the barley. Compare the results with values from literature.	
14	(Store the lipid)	
<u> </u>	Since barley bas only a very small amount of oil, the following assignments are	
	performed with sunflower oil	
	Let the sunflower oil age in a fast way (= old oil) via heat AND via light.	
15	Determine quantitatively the presence of primary autoxidation products in the fresh oil and	
	both old oils. In case you do not have enough lipid from barley, you can use sunflower oil.	
	Determine qualitatively the presence of secondary autoxidation products in both old oils and	

- Students work in groups of 3
- Assignments are divided over the 3 students

Making experimental work-flow (ExperD)

During the lab classes

Students use ExperD:

- Overview
- Communication
- Student use WebLM

Challenges in many laboratory classes - III

- I: Students having cognitive overload
 - It is often the instructional format which causes an overload
- II: Students are not motivated
 - Students do not feel responsible
- III: Students start not well-prepared
 - Often lack theoretical background
 - Often do not know what they are doing / why
 - \rightarrow pre-lab activities

Preparing: Pre-lab activities

- 1: Making the set-up in ExperD
 - Students know the assignments (goal)
 - Students know why they perform the methods
- 2: Pre-lab questions
 - Students understand the steps of the methods
 - Each method has pre-lab questions
 - Need to be answered for chosen methods
 - Some include movies of known "problems"

Pre-lab questions: prepare mode

42. Acid hydrolysis of starch

Introduction

One way to degrade starch to glucose (or a mixture of glucose, maltose and oligosaccharides) is to treat it with acid at a high temperature. At those conditions the glycosidic linkage between the glucose building blocks of starch is broken down. The degree of hydrolysis of starch is usually indicated as dextrose-equivalents (DE). The DE is the reducing capacity of a starch hydrolysate, expressed as glucose and calculated as percentage of the dry substance. For this purpose, first the total carbohydrate content has to be determined and subsequently the content of reducing sugars.

PREPARE

Edit method 🖻

Open on phone/tablet

Answer question

Estimated time table

Total time needed:+/- 1h 2∪minSteps12-56Time needed5min1h 5min10min

Set-up - schedule

Day	Activity
Thursday	Make set-up with group (ExperD)
Friday	Answer pre-lab questions (WebLM) Check set-up with supervisor (ExperD)
Monday – Friday	Experiments
Monday – Friday	Experiments Finished: Start writing
Monday – Tuesday	Writing
Wednesday	Peer-review
Friday	Review report with supervisor

Special thanks

www.labbuddy.net

(Koos van der Kolk, Kryt bv)

