

Introduction

- Reducing the number of IMUs used in human movement analysis enables its widespread use, but is hindered by the limited accuracy of single sensor orientation estimation.
- Our goal is to minimize errors in the orientation estimation from angular velocity data¹.
- Orientation estimation could be improved by increasing the sampling frequency, or by including higher order terms in the often used^{2,3} first order Taylor approximation.
- This is a first step towards sparse IMU setups in biomechanical applications in both the sport and health domain.

Methods

- Angular velocity signals with varying amplitudes and complexity (1D, 2D, 3D) are simulated.
- Orientation is estimated using a first and second order Taylor approximation at different sampling frequencies.
- First order Taylor approximation:

 $R(t + \tau) = R(t) + R(t)\tau$

Where R is the rotation matrix, τ is the timestep and $\hat{R}(t)$ is the first derivative of R(t).

Second order Taylor approximation:

 $R(t + \tau) = R(t) + R(t)\tau + R(t)\frac{\tau^2}{2}$

Where R(t) is the second derivative of R(t).

The error angle is used to denote the shortest angle between the estimated and analytically derived orientation.

UNIVERSITY OF TWENTE.

Improving the accuracy of orientation estimation from gyroscope data: A data simulation study

Anne Haitjema^{1,2}, Frank J. Wouda^{1,2}, Kim Sunesen², Jasper Reenalda^{1,3}, Bert-Jan F. van Beijnum¹, Peter H. Veltink¹ ¹University of Twente, The Netherlands, ² Movella Technologies BV, The Netherlands, ³ Roessingh Research & Development, The Netherlands

Results

Figure 2: The error angle displayed for different sampling frequencies, and for a first and second order Taylor approximation.

Conclusions

Our initial results suggest that we can improve the orientation estimation by increasing the sampling frequency, or by including a second order term in the Taylor approximation. Inclusion of the second order term seems to have a larger effect, at limited computational cost (2.5x increase in runtime to 31 µs in MATLAB at 250 Hz). More complex simulated and experimentally obtained signals are currently being evaluated.

Significance

Minimization of errors in the orientation estimation could facilitate (near) real-time applications of sparse IMU setups in biomechanical sport-oriented applications such as single-IMU-based kinematic estimation in running². Moreover, it could enable at-home monitoring of, for example, the foot progression angle of patients³, thereby generating a more continuous patient profile that could allow for tailored care.

This work is partially funded by TKI HTSM and Movella Technologies BV.

- [2] Zandbergen et al. (2022). Sensors 22: 956
- [3] Wouda et al. (2021). JNER 18:37.

[1] Bortz (1971). *IEEE Trans Aerosp Electron Syst* 7(1): 61-66

Anne Haitjema a.haitjema@utwente.nl

