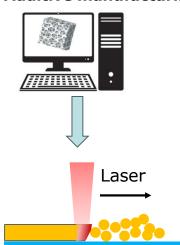
3D printing porous electrode with functional coating for CO₂ reduction

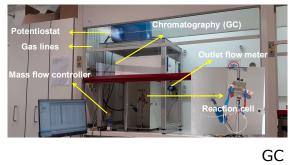

Energy Ziyu Li¹, Prasad Gonugunta¹, Prasaanth Ravi Anusuyadevi¹, Davoud Jafari², Peyman Taheri¹

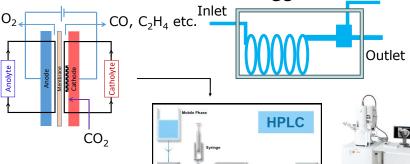
¹Department of Materials Science and Engineering, Faculty of Mechanical Engineering (ME), Delft University of Technology, the Netherlands ²Department of Design, Production and Management, University of Twente, The Netherlands

Background

- This research aim to combine 3D printing techniques with functional coating to improve the current/power densities CO₂ electrochemical conversion without sacrificing efficiency.
- Fundamental understanding of the impact of material architecture on overall faradaic efficiency, in particular mass transfer limitations.
- Improve the catalytic performance through the sophisticated precise tuning of plane porosity gradients, interconnected low-tortuosity pores, and multimodal pore size distributions.

Additive manufacturing: laser powder bed fusion (LPBF)




Denotes metanials with different area ai

Porous materials with different pore sizes

Functional coating decoration

Characterization and product analysis

Electrochemistry

TUDelft Delft University of Technology

Product analysis

SEM

UNIVERSITY OF TECHNOLOGY

Signal

Next step:

- Initially, Copper (Cu) nanoparticles will be deposited onto porous Ti alloy-based substrates through electroless deposition.
- Subsequent analysis will focus on elucidating the impact of varying pore sizes on the efficiency and resultant products of CO₂ reduction.
- These findings can facilitate understanding the effect of pore size and the simultaneous effect of co-catalysts on the product selectivity.

Funded by: 4TU Energy (PTB-PTB600)

